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Preface

This book has been written to support a one-semester laboratory course in electronics that is taught
at Carnegie Mellon University (CMU). Physics majors typically take this course during the second
semester of their sophomore year. The course as taught at CMU consists of two one-hour lectures
and two three-hour labs per week. Students taking this course are expected to have completed three
semesters of introductory physics courses. This includes an introduction to modern physics as well as a
first course on mathematical methods in physics. While in principle this course should be accessible to
students after completing one year of study, the additional math from the sophomore level courses helps
with understanding of the math used in electronics—in particular complex numbers. However, I have
tried to write the book as a self contained package with sufficient review of this math that it should be
accessible. However, some of the optional topics may not be appropriate.

The material in this book has been developed from lecture notes that were used throughout the
course. It also includes material that is not normally covered in the course, but is felt to show some
of the diversity in the topic. The purpose of this book is not to train expert electronic designers, but
rather to expose science students to basic electronics concepts in conjunction with hands-on laboratory
experience that closely matches the material in the book. When possible, I have tried to present the
material in context with other physics courses, as well as trying to analyze equations the way that
scientists view them. Students completing such a course should be ready to use a more-sophisticated
text in designing circuits for use in other laboratory environments.

In writing this book, I have drawn on handouts from and discussion with my colleagues at CMU.
In particular, I would like to acknowledge course handouts written by Bob Suter. I would also like to
thank Brian Quinn for his careful reading of the original sets of lecture notes and Roy Briere for many
discussions on the presentation of material. I also deeply appreciate the careful reading the manuscript
by Ted LaPage. His comments have made the book substantially clearer. However, even with all this
help, there will certainly still remain errors in the text. For those, I must take personal responsibility.
Finally, I would like to thank the several years of CMU sophomores who finally managed to make me
believe that a more appropriate text needed to be developed for the course and my wife Annette and
daughter Allison for convincing me to take the plunge and actually write this book.
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Chapter 1

Direct-Current Circuits

1.1 Introduction

This chapter is divided into two parts. The first is a review of basic electricity and magnetism concepts.
We then review the definitions of voltage and current and move on to resistance, capacitance and then
inductance. The second half of this chapter then looks in detail at direct-current circuits and the concept
of equivalent circuits based on the current-versus-voltage curves of various devices. These latter concepts
will be important throughout the remainder of the text.

1.2 Electricity and Magnetism

1.2.1 Coulomb’s Law

Any study of electricity and magnetism begins with Coulomb’s

Q1

Q2

r

F12

r̂
12

Figure 1.1: Two charges, Q1 and Q2 are
separated by some radius, ~r12. The force
exerted on charge 2 by charge 1 is given
by Coulomb’s law.

law. This states that two electric charges separated by a dis-
tance r exert forces on each other given in equation 1.1, (see
Figure 1.1).

~F1on2 = −~F2on1 =
1

4πǫo

Q1Q2

r2
r̂12 . (1.1)

The quantity r̂12 is a unit vector in the direction of ~r12. As one
can see, the force falls off like one over the distance squared,
and is proportional to the two electric charges. In the MKS
system, charge is measured in Coulombs, C. The basic unit
of charge is the magnitude of the charge on the electron, e =
1.6×10−19 C. The quantity ǫo is known as the vacuum permit-
tivity and has a value of ǫo = 8.8541878176× 10−12 C2/Nm2.
From this, we find that the constant of proportionality in
Coulomb’s law is 1

4πǫo
= 9 × 109Nm2/C2.

Coulomb’s law can be generalized to the electric field of a point charge, ~E, where for a point charge
Q, the electric field is given as

~E =
1

4πǫo

Q

r2
r̂.

This allows us to rewrite Coulomb’s law for some electric charge, Q2 placed in some electric field ~E as:

~F = Q2
~E

1
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If we consider a magnetic field, ~B, and moving charges in addition to our electric fields, then we can
generalize the force law to

~F = Q2

(

~E + ~v × ~B
)

.

In MKS units, ~B is measured in Tesla, T , such that T = (N · s)/(C ·m) or N/(A ·m), in which the unit
of current, Ampere, A = C/s has been introduced.

1.2.2 Voltage

The potential energy of a charge in an electric field is measured relative to the potential energy at some
reference point:

U(~r) − U(~ro) = −Q
∫ ~r

~ro

~E(~r) · d~r.

This is just the work required to move the charge Q from ~r0 to ~r through the electric field ~E. Recall
that the differential amount of work is dW = ~F · d~r and that the potential energy is just the integral
of this quantity. The potential energy, U(~r), is well-defined because the integral is independent of the
path taken from ~r0 to ~r. Potential energy has the units of energy or Joules, J .

The electric potential, or just potential, at point ~r is defined as the potential energy per unit of
charge. The potential difference between the points ~r and ~ro is given in equation 1.2. We refer to the
potential difference between two points as the voltage between those points.

V (~r) − V (~ro) = [U(~r) − U(~ro)] /Q =

∫ ~r

~ro

~E(~r) · d~r. (1.2)

The units of potential difference, or voltage, are Volts, V = J/C. For positive Q, a point of higher
potential energy is said to be at a higher potential. In fact, the charge carriers we usually deal with are
electrons; we will finesse this point by pretending the charges are positive, but flowing in the opposite
direction. This is discussed below. To summarize: a point of high potential is a point of high potential
energy for positive charges; a point of negative potential is a point of negative potential energy for
positive charges. Positive charges tend to move toward low potential points whereas electrons tend to
move toward points of high potential. All potentials are defined relative to a chosen reference position
and its potential, but in any physical problem, it is only the difference in potential that matters, not
its absolute value at some given point. This difference is better referred to as the voltage between the
points.

In electronics, we apply a voltage to a circuit by connecting the circuit to a voltage source which
may be a battery, an electronic constant-voltage source (DC or “direct current” source) or a source
whose voltage varies with time (AC or “alternating current” source in the case of a sinusoidal time
dependence). Such a source always has (at least) two terminals (or connection points) and the “output
voltage” of the source is the potential difference or voltage between these terminals.

Physiological response to an applied voltage is due to the fact that our bodies contain charged
particles which can move in response to an electric. We sense a shock because it interferes
with normal body function. Our nerves operate by sending electrical signals to our spinal
cord and brain through electrically conducting nerve fibers. A few volts on the skin generally
does not produce a discernible result—that is, noticeable current does not reach nerve fibers.
Response to larger voltage differences depends on the distance |~r−~ro| over which the voltage
is applied and the physiological position of application. A voltage difference of thousands
of volts applied over a distance of about 5 mm on the tip of a finger might only result in a
surprise and a small burned spot.The same voltage applied from a finger on the left hand
to a finger on the right hand might have dramatically different results! Here, an electrical
disturbance might well pass near the heart which is controlled by electrical impulses.
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A standard convention is to measure voltages relative to that of the Earth (i.e., ~r0 is some point
deep in the ground). What this usually means is that we measure voltage relative to the power-company
ground or relative to a cold water pipe which is literally attached to the earth (when things are working
right, these are the same). As a practical matter, the boxes containing most electronic devices are
grounded so that you do not shock yourself when you touch them.

An exception to this convention occurs when you use a battery or a floating power supply: these
devices maintain (more or less) a fixed potential difference between their terminals. The potential floats
relative to ground unless you explicitly connect one side to a conductor which is grounded. This is
sometimes required and sometimes just a good idea. On rare occasions it cannot be done.

Since V (~r) is independent of the path from the reference point to ~r, we can follow any path from
one of the source’s terminals to the other and we will see the same potential difference. An extension
of this logic is known as (one of) Kirchhoff’s laws:

∑

loop

Vi = 0, (1.3)

where the Vi are voltage rises (or drops—you choose one or the other and use appropriate signs) across
elements in a loop. Note that in going around a loop, we may have some voltage rises and some drops:
once we go around an entire loop, we must return to the potential at which we started.

In electronics, we generally approximate wires as perfect conductors. Wires therefore have NO
potential drop. The voltage at one end of a wire is the same as that at the other end. In circuit
diagrams, we represent wires as lines. All points connected to the same line have to be at the same
potential. In a circuit, the standard symbol for a DC voltage source is shown in Figure 1.2. The longer
line is the terminal that is at the higher potential.�
Figure 1.2: The standard electrical symbol for a DC voltage source. The terminal on the left is at a higher
potential than that on the right.

1.2.3 Current

An electrical current corresponds to a flow of electrical charges. The current, I, is the charge per second
passing through a cross-sectional area of interest. If there is a local density of carriers, n [m−3] or, more
conventionally, [cm−3], of charges Q, moving with average velocity ~v, then the amount of charge per
second per area is

~J = nQ~v. (1.4)

~J is the current density with units of C/(s ·m2) or A/m2. If A is the area, perpendicular to the average
velocity, ~v, over which this charge is flowing (think of a wire), then the magnitude of the total current is

I = JA . (1.5)

Expanding this, we find that

I = nQvA . (1.6)

In electrical circuits, the conducting objects are generally electrons flowing through various materials.
For electrons, Q = −e, where e = 1.602 × 10−19 C. Since the charge is negative (this is a convention
that dates back to Benjamin Franklin—blame him!), the current flows in the opposite direction to the
velocity or flow of electrons. However, I is unchanged if we replace Q by −Q and ~v by −~v. Therefore,
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we can just as well think of positively charged particles going in the opposite direction to the electrons.
In electronics, we only concern ourselves with the direction of current flow and ignore the question of
the sign of carrier.

So, in what direction does the charge flow? First of all, the electrons are bound in materials, so
it would take a large amount of energy to make them flow out of the material. Thus, by configuring
materials (metal wires and semiconductors) into specific shapes, we determine where current flows. In
a metal, charges are free to distribute themselves in response to a potential field. If one applies a
significant potential difference (voltage) between the ends of a wire, a very large current can flow. That

is, if ~E is finite, a force will quickly generate a significant ~v and, thus, a significant current. On the other
hand, even in a metal, collisions limit the velocity and this gives rise to resistance. In a passive circuit
element, positive charge always flows from high voltage to low (that is, electrons flow in the opposite
direction). Only where chemical (batteries) or other outside electromagnetic forces (DC or AC supplies)
are active can charges flow in the opposite direction.

1.2.4 Conductivity, Resistivity and Resistance

In the previous section, we related the current in a material to the flow of charge carriers through the
material (equation 1.4). In fact, it is an electric field, ~E, in the material that causes the charge carriers
to move. As such, it makes sense to define a proportionality constant between the vector current density,
~J , and the electric field in a material, ~E. This constant is known as the conductivity of the material
and is given the symbol g. Equation 1.7 expresses this relationship.

~J = g ~E (1.7)

If we consider current flowing through a wire, equation 1.5 gives us the current I in terms of J and the
area of the wire. Assuming that the electric field is uniform throughout the wire, the potential difference
along the length, l, of the wire is just V = E · l. If we put all of this together, we arrive at an expression
that relates the current flowing through a wire to the potential difference between the ends of the wire.

I =
gA

l
· V

From this, we can define the conductance, G, of the wire to be

G =
gA

l

and the inverse, known as the resistance, R, of the wire to be

R =
l

gA
.

We can rewrite this as the familiar Ohm’s Law,

V = I ·R (1.8)

which can also be written in terms of conductance as

I = V ·G .

From equation 1.8, the dimensions of resistance are volts per ampere, or ohms, Ω. The standard symbol
for a resistor is shown in Figure 1.3.

While the conductivity is a convenient number to report, one normally finds the inverse of the
conductivity listed. This is defined as the resistivity of the material:

ρ =
1

g
.
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Using the resistivity, the resistance of some material is given as R = ρl/A. The dimensions of resistivity
are Ωm. Table 1.1 gives resistivity values for several materials. Good conductors such as metals have a
very small resistivity, while good insulators have a very large resistivity.

The resistivity of a material also has a temperature dependence. Equation 1.9 shows the temperature
dependence of ρ. Resistivity is typically reported at some reference temperature, T0, which is usually
taken to be room temperature.

ρ(T ) = ρ(T0) [1 + α (T − T0)] (1.9)

The temperature coefficient, α can then be used to compute the resistivity at some other temperature.
The exact definition of the temperature coefficient, α, is

α =
1

ρ

dρ

dT
. (1.10)

From this latter definition, it is clear that equation 1.9 is only an approximation for temperature depen-
dence of ρ. It is valid if the difference between the temperature and the reference temperature are small
enough. It is valid for nearly everything that we might do in an electronics course with the exception of
burning out a resistor!

Values for α are listed in Table 1.1. For metals, these numbers are�
Figure 1.3: The standard electri-
cal symbol for a resistor.

positive, which means that the resistivity, and hence the resistance
of the material goes up as the temperature is increased. Note that
for semi-conductors, we find that α is negative. The resistivity goes
down as the temperature is increased. We will see when we discuss

semiconductors that the conductivity is in fact increasing with increasing temperature.

Material ρ, Ω ·m α, K−1

Metals
Copper 17.2 × 10−9 0.00393
Silver 15.9 × 10−9 0.0038
Gold 24.4 × 10−9 0.0034
Aluminum 28.2 × 10−9 0.0039
Brass 70 × 10−9 0.0038
Iron 100 × 10−9 0.005
Mercury 957.8 × 10−9 0.00089
Nickel 78 × 10−9 0.006
Tantalum 155 × 10−9 0.0031
Tin 115 × 10−9 0.0042
Zinc 58 × 10−9 0.0037

Semiconductors
Carbon 35 × 10−6 −0.0005
Germanium 0.46 −0.048
Silicon 0.64 × 103 −0.075

Insulators
Glass 1010 to 1014

Quartz 7.5 × 1017

Table 1.1: The resistivity, ρ and the thermal coefficient α for several different materials at 20 ◦C. Data for
metals are taken from the Handbook of Chemistry and Physics, 56’th edition, CRC Press, Inc., Cleveland,
OH. Data for the semiconductors and insulators are taken from Wikipedia.
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1.2.5 Power

As with any physical system, we know that in electronics energy is conserved. However, rather than
talking about energy, we usually discuss the time rate of change of energy, or the power, where power,
P , is defined as

P =
dE

dt
.

Since energy is measured in Joules, the unit of power is a Joule per second, or a Watt.

1W = 1J/s

In electronics, we supply power to a circuit, some power is dissipated by the circuit (as heat), and some
power can be delivered to the output of the circuit. For a current I flowing through a resistor R, the
power dissipated in the resistor is just

PR = I2R .

Using Ohm’s law, we can write the power dissipated in a resistor in two other equivalent forms:

PR = V I

PR =
V 2

R
.

In addition to the dissipated power, we also have power supplied to a circuit. If there is a voltage source,
V , which drives a current I through the circuit, then the power supplied to the circuit is

Ps = V I .

By conservation of energy, we can easily show that the power a circuit delivered to its output is equal
to the power supplied minus the power dissipated.

Example: A 5-Volt DC power supply has a 1000Ω resistor connected between its leads. How much
power does the power supply provide and what is the power dissipated in the resistor? From Ohm’s law,
we know that the current through the resistor must be I = V/R, or 5mA. This means that the power
delivered by the supply is just P = V I, or 25mW . The power dissipated in the resistor is PR = I2R,
or again 25mW .

1.2.6 Capacitance and Capacitors

If a uniform electric field, ~E, exists between two parallel conducting plates which are not electrically
connected together, then we will induce surface charges on the surfaces of the two plates, +Q on the
left-hand plate and −Q on the right-hand plate. This is shown schematically in Figure 1.4. The two
plates are each of area A and are separated by a distance l. The induced charges will be spread over
the surfaces with surface densities +σ and −σ respectively, where Q = σ ·A. Continuing, we also know
that the electric field of an infinite plate with uniform surface charge density σ is given as

E =
σ

ǫ0
.

The electric field creates a potential difference between the two plates of V = El, with the left-hand
plate at a higher potential. So putting all of this together, we can arrive at a relationship between the
charge on the capacitor plates, Q and the voltage between the two plates. This is given by:

Q =
ǫ0A

l
· V .
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l

A

E

+Q −Q

−σ

+σ

Figure 1.4: Two parallel conducting plates of area A separated by a distance l have an electric field ~E that
points from the left plate to the right plate. A positive charge, +Q is induced on the left-hand plate, while
a negative charge, −Q is induced on the right-hand plate. The surface charge densities are +σ and −σ
respectively.

We define the constant of proportionality as the capacitance, C, of the parallel plates.

C =
ǫ0A

l
(1.11)

The MKS unit of capacitance is the Farad, F , where a Farad is a�
Figure 1.5: The standard electri-
cal symbol for a capacitor.

Coulomb per Volt, 1F = 1C/V . If an insulating material is inserted
into the gap, it will have a permittivity ǫ, and in equation 1.11
will just replace ǫ0 with ǫ. Normally, permittivity is written as a
dielectric constant K times the vacuum permittivity. The standard

symbol for a capacitor is shown in Figure 1.5.

ǫ = Kǫ0

Typical values for permittivity are given in Table 1.2.
If we apply a potential difference, V , across a capacitor of capacitance C, then there will be a charges

±Q on the two capacitor plates such that

Q = CV . (1.12)

We refer to the charge Q as the stored charge in the capacitor. If we place two capacitors in parallel to
each other, and apply the same potential difference across both of them, then each will have a stored
charge given by equation 1.12. The total stored charge will be the sum of the two individual charges.
This would allow us to replace the two capacitors in parallel with a single capacitor with capacitance
equal to the sum of the two individual capacitances. The equivalent capacitance of two capacitors in
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Material K
Vacuum 1.00
Air 1.0005
Glass 5 − 10
Mica 3 − 6
Silicon 11.7
Water 80
Barium titanate 1200

Table 1.2: Dielectric constants for various materials. The numbers are taken from Wikipedia.

parallel is just the sum of the two individual capacitances. For n capacitors in parallel, it is easy to
show that the equivalent capacitance is just the sum of the individual capacitances.

C|| = C1 + · · · + Cn (1.13)

If two capacitors are placed in series and a total voltage V is placed across them, then it is easy to
see that each of the capacitors must have exactly the same charge on it, Q, and this Q is the charge
that would be on the equivalent capacitance. We would also see that the potential difference across an
individual capacitor is some fraction of the total V , in fact Vi = Q/Ci. The sum of the individual Vis
must add up to the total voltage, V . This leads us to the formula for n capacitors in series.

1

Cseries
=

1

C1
+ · · · + 1

Cn
(1.14)

Electrolytic Capacitors

+

Figure 1.6: Three typical circuit symbols for an electrolytic capacitor. The anode is shown to the right in
each of the symbols.

A particular type of capacitor is the electrolytic capacitor. This is made with two foil layers around
a thin paper layer. The paper has been soaked in a a liquid electrolyte and one of the foils has an
insulating oxide layer on the side next to the paper. The foil with the oxide layer is known as the anode,
while the foil in electrical contact with the paper is known as the cathode layer. These capacitors have
a voltage polarity requirement in that the anode be more positive than the cathode. If a reverse voltage
is applied, it can destroy the central layer. The heat produced during the chemical reaction can cause
the liquid layer to boil, and possibly explode the capacitor. In Figure 1.6 are shown three commonly
used symbols for an electrolytic capacitor.

1.2.7 Inductance and Inductors

If we consider a solenoidal coil of N tightly wound turns and cross-sectional area A, the magnitude
of the magnetic field in the center of the coil is given as

B = µ0NI

where µ0 is the vacuum permeability defined to be 4π × 10−7T/A. The magnetic flux, ΦB , is given as
the product of B times A, so in terms of the magnetic flux, we have that

ΦB = µ0NIA .
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For any coil, we can relate the magnetic flux through the coil to the current flowing in the coil. This
allows us to define the self-inductance, or just inductance of the coil, L, using the ratio in equation 1.15.
The inductance of a coil is a constant that depends on geometry of the coil.

L =
NΦB

I
(1.15)

In the case where we can a explicitly compute ΦB , it is possible to calculate L. In most cases, we would
need to measure L. For the solenoid which we initially discussed, it is easy to show that the inductance
is given as:

L = µ0N
2A .

The MKS unit for inductance is the Henry, H, where

1H = 1Tm2/A .

If we have some other material other than vacuum in the
I

B

N turns

A

Figure 1.7: A solenoid of N turns and
cross sectional area A has a current I
flowing through it. This creates a mag-
netic field ~B in the center of the coil.

middle of the coil, we replace µ0 with the magnetic perme-
ability of the new material, µ. This is usually expressed in
terms of relative permeability, Km, where µ = Kmµ0. Prob-
ably the most common core material is soft iron, which can
have Km ∼ 5000, or even more.

We also recall from elementary electricity and magnetism
that if we have a changing magnetic field passing through
a coil, this induces an electromotive force, ε across the coil.
If we have a current flowing through the coil, this generates
a magnetic field. If the current changes, then the magnetic
field changes, which in turn induces an EMF in the coil that

opposes the change in the current. The consequence is that if we have some changing current in the
coil, this will set up a potential difference, ε, (or VL), across the coil. The standard electrical symbol
for an inductor is shown in Figure 1.8.

VL = L
dI

dt
(1.16)�

Figure 1.8: The standard electrical symbol for a inductor.

1.2.8 Transformers

A transformer consists of two separate coils of wire, both wrapped around the same core material.
Because the core material has a very large µ, we generally assume that the same magnetic flux passes
through each of the two coils. Figure 1.9 shows a schematic diagram of such a device. As with inductors,
transformers are used with time varying voltages. An input voltage, v1(t) is connected to the two
terminals on the left-hand side of the transformer. This voltage drives a current, i1(t) through the
N1 turns on the left-hand side of the transformer. This current produces a magnetic flux in the core
material, given by:

ΦB(t) ≈ µN1i1(t)A .

This same magnetic flux passes through theN2 turns of the coil on the right-hand side of the transformer.
If we assume that there is no internal resistance, then the input side appears as an inductor in which
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Core material

v1
v2

N1 N2

Φ

I1

I 2

Figure 1.9: A transformer with N1 windings on the input side and N2 windings on the output side. In such
a transformer, v2 = N2

N1
· v1.

the current and the voltage out of phase by 90◦. We will come back to this point in chapter 2, where
we will also find that in such a case, no power is dissipated. The power given as the product of v time
i averages to zero.

If we initially have nothing connected to the right-hand terminals, then the ratio of the induced
electromotive forces is just equal to the ratio of the number of windings in the two coils. These EMFs
must be numerically equal to the voltages at the two sets of terminals. The magnitude of the voltage
at the right-hand terminals is related to that at the left-hand terminals by equation 1.17.

v2 = v1 ·
N2

N1
(1.17)

If N2 is larger than N1, then v2 will be larger than v1 and we have a so-called step-up transformer. If N2

is smaller than N1, then we have a step-down transformer. If we connect a load, RL to the right-hand� ���� �ð��� �ð
v1

����� ����� v2

�ò ð ��RL� �ð� �ò
Figure 1.10: A transformer with a load resistance, RL that can be connected to its output.

side of the transformer as shown in Figure 1.10, then by conservation of energy, the power delivered
to the left-side of the transformer must be the same as that dissipated on right-hand side. The exact
details of this are no relevant at this point, only that in order for energy to be conserved, we must have
the following.

v1i1 = v2i2 .

We also have that the current on the right-hand side must be

i2 =
v2
RL

,

so we find that the current on the input side is

i1 =
v1

(N2/N1)
2
RL

.
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To the input voltage, the transformer appears to be an equivalent load of:

Req = (N2/N1)
2
RL .

The transformer not only changes voltages and currents, it also transforms resistances.

1.3 Simple Circuits

1.3.1 Time scales

In this course, we usually deal with circuits in which the rates of change of voltages and currents are
small enough that we do not have to worry about propagation times. As long as the speed of light, c,
divided by the fractional rate of change of a quantity gives a distance larger than the circuit dimensions,
we can make the following approximations:

• The current is the same everywhere within an unbranched piece of a circuit.

• The potential at any point along a wire or combination of directly connected wires is the same (as
long as the current isn’t too large).

• Charge does not accumulate at any point in a circuit.

We can think of a set of directly connected wires as a single electrical point or node. The sum of currents
coming into any node has to be zero (i.e., whatever comes in through one leg has to go out through
another). This is the second of Kirchhoff’s laws.

∑

node

Ii = 0 (1.18)

We will now consider simple circuits consisting of voltage sources and resistors. If we apply some
potential difference, V , across a resistance, R, then a current given by I = V/R will flow through the
resistor. More often we talk about this in terms of a current I flowing through some resistance R and
producing a potential difference, V = IR, across the resistor. We can also use conservation of electric
charge to show that if we have a set of elements connected in series (one after the other), then the same
current, I, must flow through all of them. If we also assume that we have perfect wires (no voltage drop
along the wire), then any two points in a circuit connected directly together by a wire must be at the
same potential. ð

A
��� �ÿ��� �ò

B

������� �òD������� �ð
C

(a) ð
A
������ �ò

B

ò
D

��� ����������� �ð
C

(b)

Figure 1.11: Circuit (a) shows a junction dot at the crossing of the two wires. This means that they are
electrically connected. Circuit (b) does not have a junction dot at the intersection of the two wires which
means that the wires are not connected at the crossing.

In drawing these circuits, it is sometimes necessary for the wires to cross over each other. We
establish the convention shown in Figure 1.11 to determine whether two crossing wires are connected
to each other. If we place a junction dot at the intersection as in 1.11(a), then the wires are connected
together. Thus in figure 1.11(a), points A, B, C and D are all at the same potential. If there is
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no junction dot, then no connection exists between the wires. In 1.11(b), points A and B are at the
same potential, and points C and D are at the same potential. However, points A and C do not have
to be at the same potential. In order for this convention to work, we have to assume that wires go
straight through these junctions. They do not change directions at the junction. This means that in
Figure 1.11(b), the points A and B are connected together, and the points C and D are connected
together.

1.3.2 Resistors in Series and ParallelðA � ��
R1

�� ��
R2

� �òB
Figure 1.12: Two resistors connected in series.

Let us use these simple relations to examine the behavior of resistors in series and parallel. Consider
a battery of voltage V connected to two resistors in series, R1 and R2, as shown in Figure 1.12. The
same current, I, flows through both resistors. This tells us that the voltage drops across each resistor
must add up to V .

V = I ·R1 + I ·R2

V = I · (R1 +R2)

It is also true that the voltage divided by the total resistance of the two resistors must be I as well. If
we define Req as the equivalent resistance of the two resistors, we find the following.

I ·Req = V

I ·Req = I · (R1 +R2)

In particular, we have that

Req = R1 +R2 (1.19)

or two resistors in series are equivalent to a single resistor whose value is the sum of the two.ðA � �ÿ���� ��R1

� ����ÿ� �òB���� ��
R2

� ����
Figure 1.13: Two resistors connected in parallel.

If we now consider two resistors connected in parallel as shown in Figure 1.13, then we know that the
voltage across each of the individual resistors must be the total voltage, V , but that a different current
will flow through each resistor.

I1 =
V

R1

I2 =
V

R2
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Similarly, the current through the entire circuit, I = I1 + I2 is just:

I =
V

Req

Combining all of these, we find that:

V

Req
=

V

R1
+

V

R2

or that the equivalent resistance of two resistors in parallel is given as:

1

Req
=

1

R1
+

1

R2
. (1.20)

1.3.3 Voltage and Current Meters

In the laboratory, we use ammeters to measure current and voltmeters to measure voltage. Both of
these devices are based on a third device which produces a displacement that is proportional to the
current flowing through it. In older equipment, this was a galvanometer with a needle that moved to
indicate either positive or negative current. In modern digital devices, a circuit is used to produce the
same effect. In both cases, we will refer to this as a galvanometer. The properties of a galvanometer are
as follows:

1. The displacement is linearly proportional to the current flowing through the device for both positive
and negative currents.

2. There is some maximum current, Imax, that can flow through the device. This current produces
the largest displacement. Typically, Imax is a small number such as 1mA.

3. The galvanometer coil has some internal resistance, Rcoil, that is typically on the order of 10Ω.

Knowing these properties, we can turn a galvanometer into either an ammeter or a voltmeter using the
two circuits shown in Figure 1.14.ÿ� �úI1 � �ÿ��������� ��Rcoil

�� ��������ÿ� �úI1 � �ÿ�� ��
Rs

�� �(a) ÿ��� �ÿ���Rs

���� ��Rcoil

�� ��������ÿ��� �ÿVbVa

(b)

Figure 1.14: Circuit (a) shows the internal connections of a typical ammeter. The current is split to flow
through both the galvanometer coil with resistance Rcoil and the shunt resistor, Rs. Circuit (b) shows the
internal wiring of a typical voltmeter. The current follows a single path through both the shunt resistor, RS

and the galvanometer coil with resistance Rcoil.

The Ammeter

An ammeter measures the current flowing through the it—in order to do this, it has to be physically
put in the path of the current that you want to measure. In order to protect the galvanometer coil, we
need to physically split the current into two paths inside the meter. One path goes through the coil,
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and the second path goes through a shunt resistor, Rs. If we want to measure currents up to 1A, then
our circuit has to split the current such that when 1A flows into the meter, only Imax is allowed to flow
through the coil, and the remainder flows through the shunt resistor. This means that the shunt resistor
is typically much smaller than the coil resistance, Rcoil. In order to protect the meter, most meters are
manufactured with a fuse in the same path as the coil. The fuse is chosen such that if you try to put
more than a few times Imax through the coil, the fuse will blow.

As an example, let us assume that Rcoil = 10Ω, Imax = 10mA and the maximum current we want
to measure is I = 10A. The parallel combination of Rcoil and Rs gives us an equivalent meter resistance
of

Rmeter = (RsRcoil) / (Rs +Rcoil) .

For a 10A current, the voltage drop across the meter is Vm = I ·Rmeter.

Vm =
10A · 10Ω ·Rs

10Ω +Rs

Vm =
100V Rs

10Ω +Rs

The current flowing through the coil is then given as Icoil = Vm/Rcoil.

Icoil =
10ARs

10Ω +Rs

10mA =
10ARs

10Ω +Rs

This can be solved for the shunt resistance, where we find that

Rs = 0.101Ω.

From this, the resistance of the meter is:

Rm = 0.10Ω.

In order to both maintain precision and maximize the range of currents one can measure, a meter
typically has several different shunt resistors which are switched in depending on the maximum current
that we want to measure. While the resistance of an ammeter is quite small, it is not zero. As such, in
any real circuit, there will be a small voltage drop across a current meter. This may or may not affect
the results of your measurements.

The Voltmeter

A voltmeter measures the voltage between two points in a circuit. In order to do this, it needs to be
connected in parallel to the circuit between the two points that it is measuring. Anytime we connect
something into a circuit between two points with a voltage difference, current will flow through the
device. To prevent the voltmeter from distorting the circuit, we want the current that flows through it
to be very small. To accomplish this, we place a large resistor, Rs in series with the coil, Rcoil. The
resistance of the meter is then Rm = Rcoil +Rs. An important consideration in the design of a voltmeter
is that the maximum current should be small compared to the typical currents in a circuit.

As an example, let’s assume that we want to measure a voltage up to 10V using a meter with
Rcoil = 10Ω and Imax = 1µA. Since the 1mA flows through the entire circuit, we want the 10V
voltage drop to be across the entire meter. This then gives:

10V = (Rs + 10Ω) · 1µA
Rs = 9999990Ω

Rs ≈ 10MΩ.
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From this, we find that Rm = 10000000Ω.
In general, the resistance of a voltmeter is very large, and for most practical purposes can be assumed

to be infinite. However, if one is measuring voltages across very large load resistances, RL, it is crucial
that the meter resistance, Rm is very large compared to RL. If not, it will be necessary to make
corrections.

Measuring Voltages and Currents

Because physical ammeters do not have zero internal resistance and physical voltmeters do not have
infinite internal resistance, using these devices may sometimes provide a distorted measurement. If you
suspect that the meters are actually affecting your measurement, one way to account for this is to make
measurements with both circuits shown in Figure 1.15. The voltages and currents that are measured in
the two cases will be different, but the measurements can be combined to solve for what the current and
voltage would be if the meters were not in the circuit. This exercise is left for the reader in problem 12.

�Vo

������ �ÿ� ��R

� �ÿ� ��A � �ÿ� �������������������������� ���� ��������� ��V ���� ������ �Vo

������ �ÿ� ��R

� �ÿ� ��A � �ÿ� �������������������������� ���� ������ ��V � ������
Figure 1.15: Two possible circuits for measuring the voltage across some load, R, and the current through
the same load. In the limit of perfect voltmeters (infinite internal resistance) and ammeters (zero internal
resistance), both of these circuits would yield the same results.

Measuring Resistances

Modern multi-meters that can measure voltage and current are usually also capable of measuring the
resistance between their probes. They do this by setting up a known potential difference between the
probes, and then measuring the current that flows through them. If we simply place a resistor between
the probes, we will very likely get an accurate reading of its resistance. However, if we try to make a
measurement of a resistor that is part of a circuit, we may encounter problems. It is likely that there
is more than one path through the circuit between the two probes–not just the resistor we are probing.
We would measure the equivalent resistance of all of these paths. If, as part of the functioning of the
circuit, there is a potential difference across the resistor, then our reading can be even more distorted.
It is even possible to measure an apparent negative resistance. If we want to measure the resistance of
some component, we need to make the measurement when it is not part of a circuit.

1.3.4 Circuit Analysis using Kirchhoff’s Rules

In many circuits, we can work our way through the circuit using the rules for series and parallel compo-
nents to solve for voltage and current in any part of the circuit. However, some circuits get very messy
when we apply these rules, and others are such that it is not possible to make progress with only these
rules. In these cases, we need more powerful techniques to analyze circuits. One such technique is to
use the so-called Kirchhoff’s laws, as defined earlier in this chapter. These are:

• The sum of currents coming into any node has to be zero (equation 1.18).

• The sum of voltage drops around a closed loop has to be zero (equation 1.3).
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We will use these rules to analyze the circuit shown in Figure 1.16.

�Vo

����� ��R1

� �úI1 �� �ÿ�� �úI3 � ��
R2

� �����������
�
� ��

R2

� �øI3�� �ÿ�� �øI1� ��
R1

� ����� ��û I2

�Vo

û I2

��
Figure 1.16: Example circuit for using Kirchhoff’s rules.

There are two nodes in this circuit: the points in the center of the circuit where three wires come
together. Let us start by examining the node at the center top of the circuit. As shown in the figure,
we can define the current flowing out of R1 into the node as I1. The current that flows up from the
voltage source into the node is I2 and the current that flows out of this node is I3. By conservation of
charge, we know that the same currents flow through the wires that go into the lower node as well. If
we apply the first Kirchhoff rule to the upper node, we have that I1 and I2 flow into the node and I3
flows out. This gives us that:

I1 + I2 − I3 = 0. (1.21)

The lower node would yield the exact same equation. Now let us look at the loop around the outside of
the circuit. If we follow the circuit around, every time we pass through a voltage source from negative to
positive, we add the voltage. If we go in the reverse direction, we subtract the voltage. When a current
goes through a resistor in the direction that we are going, we subtract I · R. When the directions are
opposite, we add I ·R. If we start from the battery at the left and write the equation as we go clockwise
around the outside of the circuit, then we have:

0 = Vo − I1 ·R1 − I3 ·R2 − I3 ·R2 − I1 ·R1

0 = Vo − 2 · (I1 ·R1 + I3 ·R2) (1.22)

If we start at the same point, but move clockwise around the left-most loop, we have:

0 = Vo − I1 ·R1 − Vo − I1 ·R1

0 = −2 · I1 ·R

which tells us simply that I1 = 0. Finally, we can look at the right-most loop in the circuit. Again,
moving clockwise around this loop, we can write that

0 = Vo − I3 ·R2 − I3 ·R2

0 = Vo − 2 · I3 ·R2 (1.23)

Subtracting equation 1.23 from equation 1.22, we obtain the that:

0 = −2 · I1 ·R1
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or, we again find that I1 = 0. We can then put this into equation 1.22 to obtain:

I3 =
Vo

2R2
.

Finally, from equation 1.21, we find that I3 = I2. If we write down all possible equations, there will
be redundant information. However, some combinations of these equations may be easier to solve than
others.

1.4 Power dissipation

Above, we discussed the fact that a charge moving through a potential difference in vacuum will acquire
kinetic energy. We are not concerned here with vacuum electronics. In a material, charges experience
collisions and lose kinetic energy. All the energy they would have gained shows up as heat or stored
energy of some kind. Electrical resistance is analogous to a frictional force and gives rise to heat.

If a current, I, passes through a potential difference, V , the rate of energy dissipation or storage is
given as:

P = V I. (1.24)

If the current is passing through a resistive element of resistance R, then we also know that V = I ·R.
We can rewrite the above equation to yield the power dissipated in the resistor as

P = I2R = V 2/R. (1.25)

1.5 Equivalent Circuits

As we work through this course, we will find that any linear two-terminal network is equivalent to a
single resistor, R, in series with a single voltage source, V . The idea of equivalent circuits is something
that should be familiar from introductory electricity and magnetism. We want to replace something
complicated by something simpler that has the same behavior. Thus, we can more easily understand
the global behavior of the circuit while not having to worry about the details of what is happening in
the circuit. At this point, we effectively assume that any two-terminal network of resistors and voltage
sources is equivalent to a single resistor R in series with a single voltage source V . This is a remarkable
assumption about which we would be well advised to ask “Why is it true?” Before we answer this, let
us explore what we mean by equivalent.

1.5.1 Simple Equivalents

We will start with two equivalents with which we are already quite familiar. These are the cases of
resistors in series and parallel. Figure 1.17 shows two resistors in series while Figure 1.18 show two
resistors in parallel. Each of these cases can be replaced by an equivalent resistance as given in the
following equations.

R series
eq = R1 +R2

1

R parallel
eq

=
1

R1
+

1

R2

While we call this an equivalent resistance, what do we mean when we say they have the same behavior?
The answer has to do with the relationship between the voltage, V , that we place across the device and
the current , I, that flows through it. If we apply some known voltage across two equivalent elements,
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R1

�� ��
R2

� �òB ðA � ��
Req

� �òB
Figure 1.17: Two resistors in series, R1, and R2 can be replaced by a single equivalent resistance whose
value is Req = R1 +R2. ðA � �ÿ���� ��R1

� ����ÿ� �òB���� ��
R2

� ���� ðA � ��Req

� �òB
Figure 1.18: Two resistors in parallel, R1, and R2 can be replaced by a single equivalent resistance whose
value is 1

Req
= 1

R1
+ 1

R2
.

the same current will flow through each one. This is shown in figure 1.19 where a voltage Vo is applied
across two resistors in series, R1 and R2. The current that flows through the circuit is

Io =
Vo

R1 +R2
.

If the same voltage is applied to the equivalent resistance, Req, then the current is given as follows.

Ieq =
Vo

Req

=
Vo

R1 +R2

= Io

The same current flows through both circuits.

ýÿ���Vo

��ÿ�� ��
R1

�� ��
R2

�� �ÿ��	A�������� �øI0������ ���ó A ��ó B ýÿ���Vo

��ÿ�� ��
Req

�� �ÿ��	A����� �øI0��� ���ó A ��ó B
Figure 1.19: When a voltage Vo is applied across two resistors in series, a current Io flows through them.
When the same voltage, Vo, is applied across the equivalent resistance, the same current, Io, flows.

1.5.2 I-V Curves

We can characterize the relationship between current and voltage with an I–V curve—a plot of the
current through the device as a function of the voltage across the device. For a resistor, the I–V curve
is a straight line with a slope of 1

R that passes through the point (0, 0) as shown in Figure 1.20. In fact,
this is the I–V curve for any network of resistors.

I =
V

R
(1.26)
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Figure 1.20: Plot (a) is the I–V curve of a resistor, R. The slope of the line is 1/R. The line has an
equation of I = V/R. Plot (b) is the I–V curve of an ideal voltage source. Plot (c) is the I–V curve of an
ideal current source.

I–V curves apply to devices other than resistors as well. Let us consider an ideal battery. Such a device
has a fixed voltage, Vo, between its two terminals and is known as a voltage source. We can characterize
its behavior by an I–V curve. Figure 1.21 shows the voltage source and the circuit necessary to measure
its I–V curve. The circuit consists of a variable resistor, Rvar, and voltage meter, V , and a current
meter, A. The I-V curve is produced by making measurements of I and V for different values of the
resistance R. In making these measurements for an ideal voltage source, the voltage is always going to
be Vo, while the measured current will be given by I = Vo/R. Such a curve is shown in Figure 1.20(b).
An ideal voltage source delivers the same voltage across its output terminals independent
of what is attached to it.

�Vo

��� �òA��� �òB
(a) �Vo

���� �ÿ���� �ÿ��	V��ÿ���� �ÿ�� ��� �� � #�� ��������� ��
A

���� �Rvar
A

B

(b)

Figure 1.21: Figure (a) is an ideal voltage source of voltage Vo. Figure (b) is the circuit necessary to measure
the I–V curve of the voltage source. It contains a variable resistor, Rvar, a voltage meter, V , and a current
meter, A.

Related to an ideal voltage source is an ideal current source. An ideal current source delivers
the same current through its output terminals independent of what is attached to it. The
I–V curve for such a device is shown in Figure 1.20(c). As we might well expect, perfect current or
voltage sources do not exist, but it is possible to build devices that behave in this fashion over some
finite range.

We can extend the concept of equivalent circuits and the I–V curve to any linear circuit that has
two terminals (the points A and B in our resistor examples).
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Example: Determine the I–V curve for the circuit shown in Figure 1.22(a).
In order to do this experimentally, we would need a variable resistor, Rvar, a voltage meter, V , and a
current meter, A. This now gives us the circuit on the right-hand side of Figure 1.22(b). To determine

�Vo

��� ��
R1

òA������� �òB
(a) �Vo

��� ��
R1

� �ÿ�� �ÿ��	V��ÿ�� �ÿ������ ��� � � #��� ��������� ��A������ �Rvar
A

B

(b)

Figure 1.22: We want to determine the I–V curve for the circuit on the left-hand side. To do so, we build
the circuit shown on the right-hand side of the plot.

the I–V curve, we now want to solve for both the current and voltage as a function of the value of the
variable resistor. The current through the variable resistor is given as:

I =
Vo

R1 +Rvar

Using this, we can get the voltage across the variable resistor as

VAB(Rvar) = I ·Rvar

= Vo ·
Rvar

R1 +Rvar

Let us now evaluate this for several values of the variable resistor. The results are given in Table 1.3,
while Figure 1.23 is a plot of the I–V curve. The slope of the line is −1/R1 and its equation is given as

I = (Vo − VAB) /R1

Rvar VAB I
0 0 Vo/R1

R1/2 Vo/3R1 2Vo/3R1

R1 Vo/2 Vo/2R1

2R1 2Vo/3 Vo/3R1

∞ Vo 0

Table 1.3: Example voltage and current data.

1.5.3 Equivalent Circuits

We can now return to our earlier question about equivalent circuits and discuss when it is possible to
replace a two-terminal network with a resistor in series with a voltage source. First, it is restricted to
circuits containing only linear elements (resistors obeying Ohm’s law, and voltage and current sources).
When this is the case, we can use Kirchhoff’s laws to construct a set of linear algebraic equations
involving voltages across and currents through the elements. Properly done, these equations can be
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Figure 1.23: The I–V curve of the circuit in Figure 1.22.

reduced to N equations in N unknown currents. Each current will contain a contribution linearly
proportional to each voltage source in the circuit divided by a coefficient with units of resistance.

Now a very important point: The concept of an equivalent circuit applies to only one pair of terminals
at a time. Any pair of terminals you choose will have an equivalent circuit, but that equivalent will be
different from one set of terminals to another. You can open a circuit up at any point and construct an
I-V curve relating the current through the terminals to the voltage across them. This will have to be
a linear relation because of the linearity of the governing equations. There are only two cases to worry
about:

• The circuit is composed entirely of passive, linear elements - i.e., resistors. The open-circuit
voltage will necessarily be zero. If we apply a positive voltage, we will put a positive current into
the circuit. Hence, the I-V plot is a straight line through the origin with a positive slope (as long
as we choose our signs right). The inverse slope is the equivalent resistance of the circuit.

• The circuit contains resistors and sources. The open circuit voltage (the voltage when no current
is drawn) will be finite, giving a point on the horizontal or V -axis. With a short circuit across the
terminals (i.e., a wire), there will be a finite current and zero voltage. Thus, we have a straight line
that does not go through the origin. Any such line can also be generated by a single source and
a single resistor: a voltage source in series with a resistor (the Thèvenin equivalent) or a current
source in parallel with a resistor (the Norton equivalent).

We will find that these simple ideas of equivalent circuits also hold for alternating-current circuits
as well as direct-current circuits. Because equivalent circuits are so useful in understanding circuit
behavior, understanding how to use them is crucial to the mastery of the material in the remainder of
this book.

1.5.4 Thèvenin and Norton Equivalents

Two very useful equivalent circuits are the Thèvenin equivalent circuit and the Norton equivalent circuit.
Any two-terminal circuit can be replaced by either of these. In this course, the Thèvenin equivalent is
more useful, but it is important to understand both of them. The Thèvenin equivalent circuit is an ideal
voltage source, Vth, in series with a resistance, Rth (see Figure 1.24(a)). The Norton equivalent Circuit
is an ideal current source, IN , in parallel with a resistance, RN (see Figure 1.24(b)). In the previous
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example, we have already determined the I-V curve of the Thèvenin circuit. We now claim that the
Norton circuit has an identical I–V curve to the Thèvenin circuit.

�Vth

��� ��
Rth

� �òA�������� �òB
(a) /IN

������� �ÿ���RN ��ÿ����� ��� ����� �òA����� �òB
(b)

Figure 1.24: The Thèvenin equivalent circuit (a) and the Norton equivalent circuit (b).

We can show this by again examining the behavior of the circuit when a variable resistor is attached
between the terminals A and B. It is easy to show that we obtain the following values of I and V as a
function of Rvar. The Norton and Thèvenin Circuits are equivalent to each other if we have Rth = RN

Rvar VAB I
0 0 IN
RN IN ·RN/2 IN/2
∞ IN ·RN 0

and IN = Vth/Rth.
If we are now given some circuit with two outputs, A and B, how do we go about determining the

values of Rth and Vth for the equivalent circuits? The answer is that we determine the I–V curve of
the circuit. In the lab, we do this by making a pair of measurements. The two obvious measurements
to make are the open-circuit voltage and the short-circuit current. If we simply measure the voltage
between A and B with nothing else hooked up, we measure the so-called open-circuit voltage. This
voltage is Vth, (or IN/RN ). If we then connect A to B with a wire, the current through the wire is
known as the short-circuit current. This current is IN (or Vth/Rth). The Thèvenin resistance can then
be obtained as:

Rth = Vth/IN . (1.27)

However, unless one clearly understands the behavior of the circuit, shorting the terminals together is
generally a very bad idea. It might be possible for a very large current to flow which could burn out
either the measuring devices or even the circuit in question. A much better approach is to put some
finite resistance, RL, between A and B and measure the voltage across this resistor, VL. In such a
measurement, it can be shown that

Rth = RL ·
(

Vth − VL

VL

)

(1.28)

The Thèvenin and Norton theorems also hold for AC circuits. We simply replace the term “resis-
tance” with “impedance” and the same rules apply. The “equivalent impedance” may require more than
one circuit element, but conceptually, it is still just a number (a complex number, as we will see).

Example: A 1 kΩ resistor is placed between the terminals of some circuit and a voltage drop of 1V is
measured. A 5 kΩ resistor is placed across the terminals and a voltage drop of 2V is measured. What
are Vth and Rth of the Thèvenin equivalent circuit?
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From the data provided, we can determine the currents flowing through the two load resistors:
I1k = 1mA and I5k = 0.4mA. This now gives us two points on our I–V curve: (1V ,1mA) and
(2V ,0.4mA). The slope of the line between the points is −1/Rth, so we have:

−1/Rth = (1mA− 0.4mA) / (1V − 2V )

= 0.6mA/− 1V

= −.0006Ω−1

Rth = 1.67 kΩ

The voltage drop across the load resistor is now given as

VL = Vth ·RL/ (Rth +RL)

1V = Vth · 1 kΩ/2.67 kΩ

Vth = 2.67V

Example: Determine the parameters of the Thèvenin equivalent for the circuit shown in Figure 1.25.
To compute the parameters of the Thèvenin equivalent circuit, we need to mathematically determine�Vo

������� �ÿ���R ��ÿ����� ��� ��� ��
R

� �òA�������� �òB
Figure 1.25: Circuit for which the Thèvenin equivalent is computed.

the open-circuit voltage and the short circuit current. The open circuit voltage just gives Vth.

Vth = Vo

If we short the two terminals together, the short-circuit current will be IN . In this case, The current
coming out of the voltage source will be I = 2Vo/R. This current will split equally over both branches
of the circuit, so we will find that

IN = Vo/R

This then yields that the Thèvenin resistance is:

Rth =
Vo

IN

Rth =
Vo

Vo/R

Rth = R

Example: Consider the circuit shown in Figure 1.26. Let us start by looking left into the circuit
across points A and B. The Thèvenin equivalent of the circuit is shown as the circuit in Figure 1.27. By
using the techniques we have discussed for simplifying circuits, it is easy to show that the open-circuit
voltage, VAB = Vo

5 . This is just the Thèvenin voltage of the circuit.

Vth =
Vo

5
.
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Figure 1.26: A sample circuit with two output terminals, A and B.�Vth

��� ��
Rth

� �òA�������� �òB
Figure 1.27: The Thèvenin equivalent circuit of the the circuit in Figure 1.26 when one looks to the left
across the terminals A and B.

In order to determine Rth of the circuit, we need to determine the current that would flow through a
short circuit between A and B. Again, using the techniques developed earlier, we find that

IN =
Vo

8R
.

This then leads to

Rth =
Vth

IN

Rth =
8

5
R.

�Vo

��� ��
R

� �ÿ�� �ÿ���R ��ÿ������ ��� �� �ÿC
D

(a) �R

��ÿ� ��
R

�� �ÿ ��ÿ������� �ÿC
D

(b)

Figure 1.28: If we cut the circuit from Figure 1.26 and cut between the points C and D, we produce two
new circuits. If we look left across the points C and D, we see the circuit shown in (a). If we look to the
right across the points, we see the circuit shown in (b). Note that we have removed the resistor on the
branch of the original circuit going to the point A as it will not affect the behavior of the new circuits.

It is also possible to cut the circuit at some other point and examine the Thèvenin equivalents. To
do this, let us cut the circuit at the points C and D. If we do so, we can replace the two parts of the
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�Vth

��� ��
Rth

� �ò�������� �òDC(a) �RL

����� �ð ����� �ðDC(b)

Figure 1.29: The equivalent circuits for the two circuits in Figure 1.28.

circuit with the equivalents shown in Figure 1.28. Note that in the circuit 1.28(b), we have dropped
the resistor that went to the point A. No current will be able to flow through this resistor, so it cannot
affect the behavior of the circuit. Figure 1.29 shows the equivalents for the two new circuits.

Let us now determine the parameters of the two equivalent circuits. The easy case is for Fig-
ure 1.28(b). Its equivalent is just a single resistance that is equivalent to R and R in series. This gives
us that

RL = 2R .

For part (a) of the circuit, the voltage across C and D is just Vo/2. This gives

Vth =
Vo

2
.

If we now short the circuit, we find that the Norton current is

IN =
Vo

R
.

This then yields the Thèvenin resistance

Rth =
Vth

IN

Rth =
1

2
R .

1.6 The Voltage Divider

Much of what we do in electronics depends on understanding the behavior of a very simple circuit known
as a voltage divider. This circuit is shown in Figure 1.30. A voltage divider has an input voltage, Vin,
and an output voltage, Vout. We can determine the relationship between them as follows. The current
flowing through the two resistors is given as:

I =
Vin

R1 +R2
.

The voltage across the second resistor is I ·R2, which yields that:

Vout = Vin · R2

R1 +R2
, (1.29)

or in a slightly different form:

Vout

Vin
=

R2

R1 +R2
. (1.30)
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������� ������ ���R2 ������� ������Vin
ÿ��� �òAÿ��� �òBVout

�R1

������� �ð ���R2 ������� �ð ÿ��� �òAÿ��� �òBVout

Vin

�R1

ó Vin���R2 ýÿ��� �òAÿ��� �òBVout

Figure 1.30: The basic voltage divider circuit. All three circuits are identical, they just represent different
ways of drawing the same thing and all will be used.

In using a voltage divider, we would like to be able to consider it an ideal voltage source of voltage Vout.
What is shown in Figure 1.30 is an open-circuit voltage divider, or alternatively a voltage divider

with an infinite load resistance. More typically, we place some finite load resistance RL across the output
of a voltage divider as shown in Figure 1.31.�R1

ó Vin���R2 ýÿ��� �òA��� �òBÿ����������� ��RL����������� �Vout

Figure 1.31: A voltage divider with a load resistance.

We now want to ask what the impact of this load resistance is on our assumption of an ideal voltage
source. It is relatively straightforward to determine what the new value of Vout is. The circuit now
behaves as if it is a voltage divider with R2 replaced by the parallel combination of R2 and RL; let us
call this R′

2.

R′
2 =

R2RL

R2 +RL
(1.31)

In fact, Vout will no longer be the same as before the load was connected. However, if RL is much larger
than R2, then we find that:

R′
2 ≈ R2RL

RL

R′
2 ≈ R2.

In such a limit, the output voltage will not be significantly changed. However, we should be a bit more
careful in analyzing the behavior of our circuit. If we put equation 1.31 into equation 1.30, we get the
following:

VL

Vin
=

R′
2

R1 +R′
2

VL

Vin
=

R2 ·RL

R1 ·R2 +R1 ·RL +R2 ·RL



1.6. THE VOLTAGE DIVIDER 27

VL

Vin
=

R2

R1 +R2
· 1

1 + R1R2

R1+R2

1
RL

This can be simplified to yield equation 1.32, where R1 || R2 is the equivalent resistance of R1 in
parallel with R2. If RL is much larger than this parallel combination, then the second factor becomes
approximately one.

VL

Vin
=

R2

R1 +R2
· 1

1 + R1||R2

RL

(1.32)

In the limit where the load resistance, RL, is much larger than R1 || R2, a voltage divider will behave
as an ideal voltage source.

1.6.1 The Thèvenin Equivalent of the Voltage Divider

Let us now examine the Thèvenin equivalent of our voltage divider. To determine Vth, we find the
open-circuit voltage. This is just Vout from equation 1.30.

Vth = Vin
R2

R1 +R2

We can find the Norton current by determining the short-circuit current. This yields that

IN =
Vin

R1
,

and putting these two together, we find that

Rth =
Vth

IN

Rth =

(

Vin
R2

R1 +R2

)

/

(

Vin

R1

)

Rth =
R1 ·R2

R1 +R2

Rth = R1 || R2. (1.33)

ýÿ�R2

ÿ���R1

ó Vin��� �òA��� �òBVout ýÿ�Vth

� ��
Rth

òA����� �òBVout

Figure 1.32: The Thèvenin equivalent circuit (right) of the voltage divider circuit (left). As described in the
text, Vth = Vin

R2

R1+R2
and Rth = R1 || R2.
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1.6.2 Power Dissipation in a Voltage Divider

While a voltage divider can be very convenient in allowing us to set voltages, a useful question to ask
is how much power is dissipated by the device. The power dissipated in a resistor is P = I2R. In our
voltage divider with no load attached to it, the current through both resistors is I = Vin/ (R1 +R2).
This means that the power dissipated is:

P = R1I
2 +R2I

2

P = (R1 +R2) ·
(

Vin

R1 +R2

)2

P =
V 2

in

R1 +R2
. (1.34)

For a given input voltage, the larger the resistors in the divider are, the smaller the power dissipated
is. However, the normal operating state of a voltage divider is to have a load resistor connected to it,
where

RL ≫ R1 || R2 .

This latter condition tends to push down the values of R1 and R2, and thereby increase the power
dissipated in the divider.

We now want to look at the power delivered to the load. If the circuit is well built, very little
current is diverted into the load, so IL ≪ I. We can be a bit more precise than this. We know that
RL ≫ R1 || R2. We can write RL = αR1R2/(R1 + R2), where α ≫ 1. From this we can find that the
current through the load is:

IL ≈ Vin
R2

R1 +R2

1

RL

IL ≈ Vin

αR1
.

Thus we see that the power dissipated in the load is:

Pload = RLI
2
L

Pload =

(

α
R1R2

R1 +R2

)(

Vin

αR1

)2

Pload =

(

V 2
in

R1 +R2

)(

1

α

)(

R2

R1

)

Pload = P◦ ·
(

1

α

)

·
(

R2

R1

)

where P◦ is the nominal power in the divider as in equation 1.34. The second term in the latter
equation gives the ratio of the power dissipated in the load to that in the circuit. For most normal
divider operations, R1 and R2 are similar in size. This means that the power dissipated in the load is
much smaller than what is dissipated in the circuit.

In the limit where R2 ≫ R1, it is possible that the above statement is not true. In this particular
case, almost all of the voltage drop is across R2, and we can approximate R1 = 0. In this case, RL can
have any value and the voltage drop across it will still be Vin. The power dissipated in R2 and RL can
be written as:

P2 =
V 2

in

R2

PL =
V 2

in

RL
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These can have any ratio we want, just by choosing the appropriate R2 and RL. However, this is a very
strange case. With R1 = 0, there is really no voltage divider. This is far from the normal operating
condition for a divider, but it goes to show that one has to be careful about making general statements.

Under normal operating conditions for a voltage divider, we find that the majority of the power
is dissipated in the circuit and not delivered to the load. While voltage dividers may deliver a stable
voltage, they are not a very good power supply.
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Problems

1. Justify to yourself: an electron volt (eV) is the potential energy difference per volt per electron
rather than per Coulomb: eV’s have energy units whereas V is called a potential, not a potential
energy ; when an electron is accelerated through a potential difference of 1 Volt (in vacuum), it
picks up an energy of 1eV = e× 1V = 1.602 × 10−19J.

2. In typical metals, you should know that the density of conduction electrons is n ∼ 1023cm−3 (close
to Avogadro’s number). For I = 1 Amp in a wire of diameter 1 mm, what is v, the average speed
of the electrons?

3. Consider the circuit shown in Figure 1.33 below. In terms of R1, R2 and Vo, what is the voltage
between A and B? �R1

������� ������ ���R2 ������� ������Vo
ÿ��� �òAÿ��� �òB

Figure 1.33: The circuit for problem 3.

4. Explicitly demontrate that equation 1.13 is true for two capacitors in parallel.

5. Explicitly demontrate that equation 1.14 is true for two capacitors in series.

6. For the circuit in Figure 1.33 above, what is the ratio of R2 : R1 such that the voltage across A
and B is 1

2Vo? What is the ratio of R2 : R1 such that the voltage across A and B is 1
3Vo?

1
10Vo?

7. Consider the circuit shown in Figure 1.34 which is built using six identical resistors. Use Kirchoff’s
rules to solve for the current flowing through each resistor in the circuit. What is the voltage drop
across each resistor in the circuit? (To facilitate labeling, use a notation such as Ipq and Vpq where
these represent the current flowing from point p to point q, and the voltage drop in going from
point p to point q.) �Vo

��ÿ� ��
R

� �ÿ� ��
R

� �ÿ���R ��ÿ� ��
R

� �ÿ� ��
R

� �ÿ�� � ����R ��A B C

DEF

Figure 1.34: The circuit for problem 7.

8. We now attach two output terminals to the circuit from problem 7. The resulting circuit is shown
in in Figure 1.35. (a) What is the voltage between the terminals G and H ? (b) What current
flows from G to H ? (c) If we connect a wire from G to H, what current flows through the wire
and what is the voltage between G and H ?
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��ÿ� ��
R

� �ÿ� ��
R

� �ÿ���R ��ÿ� ��
R

� �ÿ� ��
R

� �ÿ�� � ����R ��A B C

DEF

���� �òG���� �òH
Figure 1.35: The circuit for problem 8.

9. Replace the circuit from problem 8 with the simpler one shown in Figure 1.36. Vth is a voltage
source and Rth is a new resistance. What are the values of Vth and Rth such that you get the
same answer to the current and voltage questions as in problem 8?�Vth

���� ��
Rth

� �òG��������� �òH
Figure 1.36: The circuit for problem 9.

10. Replace the circuit in Figure 1.35 with the one shown in Figure 1.37 where IN is a current source
that always delivers IN amps of current and RN is a new resistance. What are the values of IN
and RN such that you get the same answer to the current and voltage between G and H as in
problem 8? /IN

������� �ÿ���RN ��ÿ����� ��� � �òG� �òH
Figure 1.37: The circuit for problem 10.

11. We can generate I-V curves for these circuits by placing a variable resistor, RV , between G and
H. As we vary the value for RV from 0 to ∞, we map a set of (V, I) points. As stated previously,
this curve should be linear. Pick 4-5 values of RV and evaluate I and V between the G and H
terminals. You can do this for either the Thèvenin or the Norton equivalent circuit. Does it matter
which one you choose? Plot these values as a graph of I versus V and show that it is indeed linear.
What is the slope of the line?

12. Consider the two circuits shown in Figure 1.15 for measuring the voltage across R and the current
through R. Assume that the internal resistance of the voltmeter is Rv = 100R and that the
internal resistance of the ammeter is Ra = 0.01R. In terms of Vo and R, what are the measured
voltages and currents in each of the two circuits?
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13. Show that the open-circuit voltage of a circuit is the Thèvenin voltage of the circuit.

14. Show that the short-circuit current is the Norton current of the circuit.

15. Show that equation 1.28 is correct.

16. Determine the parameters of the Thèvenin equivalent for the circuit shown in Figure 1.38.�Vo

������� �ÿ���R1 ��ÿ����� ��� ��� ��R2

� �òA�������� �òB
Figure 1.38: The circuit for problem 16.

17. You are given a black-box device with two output terminals. You are asked to characterize the
behavior of this device, so you proceed to measure an I − V curve for the circuit. You measure
the following two (I, V ) points: (2.0Ib, Vb) and (Ib, 5.0Vb). (a) Sketch the Thèvenin and Norton
equivalent circuits for the black box. (b) Accurately sketch the I − V curve for the black box. Be
sure to carefully label your plot. (c) From your graph, determine the Thèvenin voltage, Vth, the
Thèvenin resistance, Rth, the Norton current, IN and the Norton resistance, RN for your black
box. Express your answer in terms of Vb and Ib. (d) A load resistance of value RL = Rth (equal
to the Thèvenin resistance) is connected across the output terminals of your black box. In terms
of Vth and IN , what is the voltage across RL and the current through RL?

18. You have an R2R ladder with two output terminals as shown in Figure 1.39. (a) Sketch the
Thèvenin equivalent of the R2R ladder as seen when looking into the output terminals to the right
of the circuit. (b) Sketch the IV curve for your R2R ladder as seen from the output terminals.
Label your axes in terms of Vth and Rth. (c) What is the Thèvenin equivalent voltage, Vth, and
the Thèvenin resistance, Rth, for the R2R ladder? (Hint: You may find it useful to calculate the
voltage at the node between the 5 kΩ resistors first.)

ý���10V

��� ��5 kΩ � �ÿ� ��5 kΩ� ���� 10 kΩ��ÿ � �ÿ��� 5 kΩ��ÿÿ����������������� �ò−������ �ò+
Vout

Figure 1.39: The circuit for problem 18.

19. In Figure 1.31, let R1 = R2 = R. If RL = 2 · R, by what fraction does Vout differ from its
open-circuit value? If RL = 10 ·R? RL = 100 ·R?

20. You are asked to build a voltage divider that will take a 12V input voltage and deliver 4V into
an 8 kΩ load. Pick good values of R1 and R2 for this circuit.

21. You are asked to more carefully design the circuit above such that the power dissipated in the
voltage divider is a minimum and the output voltage sags by no more than 0.2V when the load
is connected. What values of R1 and R2 should you choose?
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22. You are given the circuit shown in Figure 1.40 with unknown values for R1, R2, V1 and V2. (a)
Sketch the form of the Thèvenin equivalent circuit as viewed across A and B for the circuit. (b)
Sketch the form of the Norton equivalent circuit as viewed across A and B for the circuit. (c)
Sketch the Thèvenin equivalent circuit as viewed across D and E when looking toward the right.

�V1

�R2

����� �ÿ�� ��R1

� �ÿ� ��
R1

� �ÿ� ��
R1

� �òA����R2

����R2 �����ÿ������ �ÿ�V2������� �ÿ�� �ÿ��ý ������ �òB
D

E

Figure 1.40: The circuit for problem 22.

23. A black-box voltage source has a Thèvenin voltage of Vth = 10.0V and a Thèvenin resistance of
Rth = 50.0Ω. To the output of this box, you will attach two resistors in series, R1,R2.
You have two design goals for your circuit:
• The voltage across R2 should be very close to 1

3Vth.
• The power dissipated in the external resistors should be kept low (under 50mW ).
(a) Accurately plot the I-V curve for the black box voltage source alone (R1 and R2 are not
attached). (b)Choose reasonable values for R1 and R2 such that the circuit will operate as desired.
(Justify your choice based on physics reasons and the design goals.) (c) The complete circuit that
you built (with output taken across R2) can be replaced by a Thèvenin equivalent circuit with
a new Thèvenin voltage of V ′

th and a new Thèvenin resistance of R′
th. What are the numerical

values of V ′
th and R′

th, based on the circuit that you designed in part b? (d) Your lab partner
accidentally attaches a load with very small RL (< 50.Ω) to your completed circuit. Will your
circuit satisfy the design goals? Briefly explain.

24. Consider the circuit shown in Figure 1.41, built from two ideal voltage sources, Vo, and four
identical resistors, R. The output from the circuit is measured between the connectors at A and
B. Answer the following questions in terms of Vo and R. (a) What is the open-circuit voltage
measured between the connectors A and B, VAB? (b) A wire is now connected from A to B and
some current, IAB , flows through the wire. What are IAB and the voltage, VAB? (c) Draw the
Thèvenin equivalent circuit as seen from the connectors A and B for the original circuit. Determine
both Vth and Rth. (d) Sketch an I–V curve for the original circuit as seen from the connectors A
and B. Carefully label your axes and indicate what the voltage and current are at the intercepts.
(e)Some unknown load is connected between A and B and you measure a voltage of VAB = 1

2Vth

across the load. What is the resistance of the load?

�Vo

��������� �ÿ�� ��R

� �ÿ���� ��R

� ����ÿ��� �ÿ�� �ò
A���� ��

R

� ���� ����R ���ÿ���������������� ��� �ò
B

��������� �ÿ����Vo

���
Figure 1.41: The circuit for problem 24.
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25. Consider the circuit shown in Figure —reffig:prob:1:25 which is built out of an ideal voltage source,
V0, and six identical resistors of resistance R. They are labeled as R1, R2, R3, R4, R5 and R6 in the
circuit below so that they can be distinguished. They all have the same resistance R. Answer the
following questions in terms of V0 and R. (a) What voltage difference will be measured between

�Vo

����ÿ� ��R1

�
R2

�
R3

� �ÿ����ÿ�R4 ÿ����ÿ�������������� �ÿ���� ���� ��R5 ���� ����� ��R6���� ��� �ò
B�� �ò
C

A

D

Figure 1.42: The circuit for problem 25.

the points A and D (VAD = VA − VD)? (a) What is the voltage difference between the points C
and A (VCA = VC −VA)? (c) What voltage difference will be measured between the points B and
C (VBC = VB−VC)? (d) What current will flow through the resistor R5? (e) Sketch the Thèvenin
equivalent circuit as seen looking into B and C towards the left. What are the Thèvenin voltage
and Thèvenin resistance in terms of V0 and R? (f) If we remove the voltage source and look into
the circuit through A and D towards the right, what are the Thèvenin voltage and Thèvenin
resistance that we see?



Chapter 2

Alternating-Current Circuits

2.1 Introduction

We are now going to look at circuits in which the voltage and currents are time-dependent, rather than
constant. We will use a notation in which V and I represent voltages and currents that are constant in
time, while v(t) and i(t) will represent time-dependent voltages and currents. We will start by examining
the case where we have:

v(t) = vo cos (ωt+ φv) (2.1)

i(t) = io cos (ωt+ φi) . (2.2)

We will only be considering circuits in which the frequency, f = ω/2π, is not changed by the circuit.
Both the voltage and current will have the same frequency, but as indicated above, they may not
have the same phase (φv may not be equal to φi). We will also start by looking at only a single
frequency, but will note that it is possible to build up any time-dependent voltage as a sum of cosines
of different frequencies (Fourier Analysis). We also note at this point that in doing the mathematical
circuit analysis, we typically use the angular frequency, ω. In doing lab work where one measures
frequencies, the quantity f is relevant. It is important to remember the factor of 2π that connects these
two quantities. The quantity f is measured in units of cycles per second, or Hertz (Hz). The angular
frequency, ω, is measured in units of radians per second. The radians are typically supressed and we
simply measure ω in inverse seconds, s−1.

The schematic in Figure 2.1 is meant to represent essentially any electronic circuit. We consider a
signal, vi(t), (which may come from a strain gage, an NMR pick-up coil, a photon or particle detector
device, the light detector in a CD player, ...) as the input to the circuit. The circuit, represented by the
box, performs some function on vi(t) and sends out a voltage, vo(t), which is appropriate for driving
some other device (the input card on a computer, a meter, audio speakers, ...). The output voltage
may be an amplified or attenuated form of the input or may measure some other property of the input
signal, but as mentioned above, the output signal and the input signal both have the same frequency.

The circuits that we study are referred to as linear systems. We can think of this in simple terms
relative to the black-box circuit in Figure 2.1. Let us assume that an input voltage of va

i produces an
output voltage of va

o and that an input voltage of vb
i produces an output voltage of vb

o. If the black-box
circuit is linear, then an input voltage that is some linear combination of the two previous input voltages,

vc
in = αva

i + βvb
i ,

where α and β are constants, it will produce an output voltage that is the same linear combination of
the two output voltages:

vc
o = αva

o + βvb
o,

35
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?

e

e

vi(t)

e

e

vo(t)

Figure 2.1: A black-box circuit with two input terminals and two output terminals.

A more mathematical definition of this is that a linear system (mechanical, electrical, or other) is one
whose response to external excitation can be described by a linear integral-differential equation. In other
words,

vo = a0vi + a1v̇ + i+ a2v̈ + i+ ...

+ b0 + b1

∫

dt′vi + b2

∫

dt′′
∫

dt′vi + ... (2.3)

Many systems in nature are approximately linear and, fortunately, the analysis of their response is
relatively straightforward. In dealing with linear electrical circuits, we will learn analysis tools that can
be applied to many other circumstances. Electrical circuits are a particularly nice context in which to
learn this analysis because one can (almost) always build a real circuit and demonstrate the results of
the analysis.

If we look at what equation 2.3 can do to a sinusoidal input signal of frequency ω, it is straightforward
to show that all of the terms on the right-hand side will be either sines or cosines containing the same
frequency, ω. The sum itself can shift the timing of the peaks and valleys of the output relative to the
input, (known as shifting the phase), or it can change the amplitude of the signal. It cannot change the
frequency.

We will study several types of circuits which perform functions on input signals and produce ap-
propriate outputs. AC circuit analysis provides the means to analyze and characterize a wide variety
of types of circuits (but not all types – notably not digital circuits). As we proceed through the book,
detailed examples will be worked out which illustrates the considerations necessary in building circuits
and using electrical instruments.

2.2 Complex Notation

It is possible to describe time-dependent electronic circuits in terms of oscillatory functions with magni-
tudes and phases. However, it is much simpler to do do this using complex notation. We treat quantities
as complex, with real and imaginary parts. In such a notation, operations that might involve multiple
trigonometric identities and many lines of not particularly clear algebra can be replaced with simple
multiplications and divisions of complex numbers. Before proceeding with time-varying voltages, we
therefore pause for a brief review of complex numbers.

A complex number, z, can be expressed as a combination of real and imaginary parts, where the
imaginary part is multiplied by

√
−1. In mathematics and physics,

√
−1 is represented by the symbol i.

Unfortunately, in electronics, the symbol i is reserved for a time-varying current. As such, we need to
introduce an alternative notation for

√
−1. In electronics, we define j =

√
−1. So rather than writing

z = a+ ib as we normally would, we write z = a+ jb.
If we have a complex number, z = a + jb, we can represent it as a point in the complex plane as

shown in Figure 2.2. We can also express this complex number in polar coordinates as a magnitude,
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Re

Im

a

b
z

φ

(a,b)

Figure 2.2: A point (a, b) in the complex plane.

| z |, and phase, φ, where

| z | =
√

a2 + b2 (2.4)

tan (φ) =
b

a
. (2.5)

We can express the real and imaginary parts of z as follows:

Re(z) = | z | cosφ (2.6)

Im(z) = | z | sinφ (2.7)

An important operation with complex numbers is the complex conjugate. If z = a+jb, then the complex
conjugate of z is z∗ = a − jb. The complex conjugate replaces j with −j in a complex number. The
product of z and z∗ is then

z · z∗ = (a+ jb) · (a− jb)

z · z∗ =
(

a2 + b2
)

+ (−abj + abj))

z · z∗ =
(

a2 + b2
)

z · z∗ = | z |2 (2.8)

If we return to equations 2.6 and 2.7, then we can write the complex number z as:

z = | z | (cosφ+ j sinφ) . (2.9)

At this point, we will make a small aside to consider the power series expansion of the function ej·x.

ej·x = 1 + jx+
(jx)2

2!
+

(jx)3

3!
+

(jx)4

4!
+

(jx)5

5!
+ · · ·

We can slightly rearrange the terms in this equation such that we collect all the real parts together, and
all the imaginary parts together. This gives is the expression as follows:

ej·x =

(

1 − x2

2!
+
x4

4!
+ · · ·

)

+ j

(

x− x3

3!
+
x5

5!
+ · · ·

)

.
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Looking carefully at this, we note that the real part is just the expansion for the cosine function, while
the imaginary part is the expansion for the sin function. This allows us to rewrite the above expression
as:

ej·x = cos (x) + j sin (x) . (2.10)

From this, we can rewrite equation 2.9 in a more compact form:

z = | z | ejφ (2.11)

which is known as the polar form of a complex number. The complex conjugate of this is just

z∗ = | z | e−jφ

where as before, we have simply replaced j with −j. We can also get the magnitude of the polar form
as we did with the Cartesian form.

zz∗ = | z |2 ejφe−jφ

= | z |2

The polar form makes multiplication and division much easier than the Cartesian form does. If we
have two complex numbers, z1 = r1e

jφ1 and z2 = r2e
jφ2 , their product is given as follows.

z1 · z2 = r1e
jφ1 · r2ejφ2

= r1 · r2ej(φ1+φ2) (2.12)

The product has a magnitude that is the product of the magnitudes of the individual complex numbers,
and a phase that is the sum of the phases of the individual numbers. Similarly, the ratio of the two
numbers is given as:

z1
z2

=
r1
r2
ej(θ1−θ2) (2.13)

where we take the ratio of the magnitudes and the difference of the phases.
If we now consider a pair of complex numbers whose magnitudes are both one, z1 = ejφ1 and

z2 = ejφ2 , then the the multiplication or division of these numbers results in simply a rotation in the
complex plane.

While polar form of complex numbers greatly facilitates multiplication and division, addition and
subtraction are clearly easier to carry out with the Cartesian form.

Another convenient features of the exponential representation of complex numbers is the way it
factors. In electronics, we will very often need to take derivatives and integrals of time dependent
voltages. As an example of how the exponential representation makes this easy, we consider a traveling
wave. It can be written in either of the following forms:

ej(kx−ωt) = ejkxe−jωt. (2.14)

In performing a spatial derivative, the time-dependent factor is just a multiplicative constant:

∂

∂x
ej(kx−ωt) = e−jωt ∂

∂x
ejkx

∂

∂x
ej(kx−ωt) = e−jωt

[

jkejkx
]

∂

∂x
ej(kx−ωt) = jkej(kx−ωt). (2.15)

In short, taking a spatial derivative is the same as multiplying by jk. You can show that a time derivative
is the same as multiplying by −jω. Furthermore, integration corresponds to multiplying by the inverse
of these quantities.
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2.3 Characterizing Time-dependent Voltages

The language that we use for time-dependent circuits is very similar to that used in describing time-
independent circuits. We have voltages and currents as before. However, we generalize resistance to
something which we call impedance. While impedance has the same units as resistance, namely ohms,
it also has the ability to change the phase between the voltage and the current. We typically use the
symbol Z for impedance. In the next section we will see that impedances in series and parallel combine
in the same way as resistors.

If we have a time-dependent voltage as given in equation 2.1, we can characterize it with several
measures. The quantity vo is referred to as the amplitude of the voltage. We also often consider the
peak-to-peak voltage, 2vo in our example. We might also consider the time average of the voltage, but
this is zero. On the other hand, v2(t) averaged over a full cycle is both non-zero and a useful quantity,
as it is related to the power dissipated. We go a bit beyond this and define the root mean square voltage
to be the square root of this average:

VRMS =
√

< v2(t) > (2.16)

For v(t) given as in equation 2.1, we can find VRMS by averaging over an integer number of cycles,
(T = N · 2π

ω ).

VRMS =

[

∫ T

0
v2

o cos2(ωt+ φv)dt

T

]
1
2

VRMS =

[

v2
o

T

(

1

2ω
sin(ωt+ φv) cos(ωt+ φv) +

1

2
t

)∣

∣

∣

∣

T

0

]
1
2

VRMS =

[

Tv2
o

2T

]

1
2

VRMS =
vo√
2

If we now return to a time-dependent voltage as in equation 2.1, we can write this slightly differently
as:

v(t) = voRe
(

ejωtejφv
)

. (2.17)

For convenience, we will omit the Re from this expression, but note that when we measure a voltage, we
look only at the real part at that particular instant in time. More generally, we write the voltage and
current as complex functions where it is implied that when we make a measurement we will only see the
real part of the expression. The voltage and current from equation 2.1 and 2.2 can now be written as

v(t) = voe
jωtejφv = voe

j(ωt+φv) (2.18)

i(t) = ioe
jωtejφi = ioe

j(ωt+φi) (2.19)

We can now generalize Ohm’s law for V = IR to v(t) = i(t)Z where the complex impedance, Z, contains
the relative phase as well as the ratio of the amplitudes of v(t) and i(t). The impedance, Z, can now
be written as:

Z(ω) =
v(t)

i(t)
(2.20)

Z(ω) =
vo

io
ej(φv−φi). (2.21)
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2.3.1 Power Dissipation in AC Circuits

In determining the power in an AC circuit, we start with the expression for a DC circuit:

P = V · I . (2.22)

Because we have a time-varying signal, we need to average it over some time. We typically choose power
per cycle, which implies an average over an integer number of periods.

Pavg =
1

T
·
∫ T

t=0

v(t) · i(t) dt (2.23)

In order to proceed, we need to look closely at what we actually put into equation 2.23 for v(t) and
i(t). To do this, we note that power is a measured quantity. As such , it should be computed using
the measured voltage and current. Because of this, we want to put the measured, or real parts of the
voltage and current into equation 2.23. If we are using the complex exponential form for current and
voltage, then we can rewrite equation 2.23 as:

Pavg =
1

T

∫ T

t=0

Re(v)Re(i) dt . (2.24)

Example: If the voltage and current are in phase,

v(t) = voe
j 2π

T t

i(t) = ioe
j( 2π

T t)

then the average power is given by

Pavg =
1

T

∫ T

t=0

Re
[

voe
j 2π

T t
]

, Re
[

ioe
j( 2π

T t)
]

dt .

We can simplify this to give that

Pavg =
v0i0
T

·
∫ T

t=0

cos (2πt/T ) cos (2πt/T ) dt

Pavg =
v0i0
T

·
∫ T

t=0

cos2 (2πt/T ) dt .

The average of cos2 over one period is just 1
2 , so we find that the average power Pavg = 1

2voio.

We can now ask what would have happened if the power were Re [v(t)i(t)] rather than equation 2.24?
If we write this as P ′

avg, this would give us the following expressions for the power.

P ′
avg =

1

T

∫ T

t=0

Re
[

voe
j 2π

T tioe
j( 2π

T t)
]

dt

P ′
avg =

v0i0
T

∫ T

t=0

[

cos2(
2π

T
t) − sin2(

2π

T
t)

]

dt

P ′
avg = 0

Clearly, the average power is not zero! The crucial point to remember here is that we have to take the
real part of both the voltage and the current when evaluating power.
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Example: Let us consider a case in which the current and voltage are out of phase by 90◦:

v(t) = voe
j 2π

T t

i(t) = ioe
j( 2π

T t−π
2 )

We can substitute these into equation 2.24 to give that

Pavg =
1

T

∫ T

t=0

Re
[

voe
j 2π

T t
]

Re
[

ioe
j( 2π

T t−π
2 )
]

dt

and then taking the real parts of both the current an voltage, we find that:

Pavg =
v0i0
T

·
∫ T

t=0

cos (2πt/T ) sin (2πt/T ) dt .

or the average power Pavg = 0. If the voltage and current are 90◦ out of phase, the average dissipated
power per cycle is zero.

2.3.2 Time-dependent Circuits

As mentioned earlier, impedances in series and parallel add just like resistors in series and parallel. In
showing this, we will carry out a derivation that only applies to sinusoidal signals. However, we will
later show that any periodic signal can be built up out of sums of sines and cosines. This is all we need
to be able to generalize the results to any signal.

For a series combination, the same instantaneous current runs through both elements, therefore the
current i(t) is the same. Thus,

v(t) = i(t) · Z1 + i(t) · Z2

v(t) = i(t) (Z1 + Z2)

v(t) = i(t)Zseries

Therefore we find that

Zseries = Z1 + Z2. (2.25)

Note that addition of complex impedances is carried out by separately adding their real and imaginary
parts. If the impedances are in polar form, we must express them as real and imaginary parts before
adding. We cannot just add amplitudes or phase angles!

For a parallel combination, the instantaneous voltage across the elements is the same, therefore the
total current io is

i(t) =
v(t)

Z1
+
v(t)

Z2

= v(t)

(

1

Z1
+

1

Z2

)

= v(t)
1

Zparallel

so we find that Zparallel =
(

1
Z1

+ 1
Z2

)−1

. This can be rewritten as:

Zparallel =
Z1Z2

Z1 + Z2
(2.26)
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Figure 2.3: The basic voltage divider circuit with a time-dependent input voltage, vi(t) and a time-dependent
output voltage, vo(t). The impedances are shown as Z1 and Z2 in the circuit.

Let us revisit the voltage divider discussed earlier. The time-dependent version is shown in Figure 2.3.
The analysis of this circuit proceeds exactly as before. The total impedance is just

Z = Z1 + Z2,

for two impedances in series. From this, the current through the circuit is given as:

i(t) = vi(t)/Z.

The voltage drop across Z2 can be written as vo and is given as

vo(t) = i(t) · Z2

vo(t) =
Z2

Z1 + Z2
· vi(t) (2.27)

The form of equation 2.27 is exactly the same as we found for a time-independent circuit.

2.4 The Gain of a Circuit

If we now focus on a time-dependent voltage having a single frequency, f , or ω = 2πf , then we can
include this in our analysis. The first point to note is that the impedances, Z, very often depends on
ω, so that we have Z(ω) in general. We also noted earlier that the types of circuits at which we are
looking do not change the frequency. If we have some input voltage,

vi = vi(ω, t),

then the output voltage can be written as

vo = vo(ω, t),

and the current can be written as

i = i(ω, t).

Using this, we can rewrite our voltage divider relation as:

vo(ω, t) =
Z2(ω)

Z1(ω) + Z2(ω)
· vi(ω, t).

The multiplicative factor that relates vo to vi is called the gain, and is given the symbol G(ω). In the
case of the voltage divider, the gain is

G(ω) =
Z2(ω)

Z1(ω) + Z2(ω)
. (2.28)
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This is one particular example of a gain, but in general we will be able to write that:

vo(ω, t) = G(ω) · vi(ω, t) , (2.29)

where the gain depends on the structure of the circuit in question.

2.5 Bode Plots

The gain of a circuit, G, as discussed in equation 2.29, is a parameter of significant interest, and we
will often find it useful to plot gain versus frequency. Note that in alternating-current circuits we may
see frequencies from a few Hz up to tens of MHz (or more), so that the x-axis of our graph will usually
be log10(f). At the same time, since the gain itself may vary by orders of magnitude, we also plot the
logarithm of the gain, resulting in a log-log plot of gain versus frequency.
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Figure 2.4: The upper plot is a typical Bode plot showing the −3 dB point. The gain is constant for low
frequencies, and then starts to fall off rapidly for frequencies above the −3 dB point. The lower plot is
the phase difference between the output and the input as a function of log f . This changes by 90◦ as the
frequency goes from 0 to ∞.

In these graphs, the point at which the power has fallen by a factor of 2 from some reference value is
also of interest. As power is proportional to the voltage squared, in order for power to fall by a factor of
2, voltage (and hence gain) must fall by a factor of

√
2 (note that log10(

√
2) = 0.15). It is particularly
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convenient to plot

20 dB log10 (| G(ω) |) vs log10 f

which is known as a Bode Plot. (The unit dB is defined below.) On such a plot, 20 dB log (| G(ω) |) will
drop by 3 dB when the power falls by a factor of 2. We will refer to this as the 3 dB point. The upper
plot of Figure 2.4 shows a typical Bode plot with the gain falling off towards high frequencies. The 3 dB
point occurs when we are 3 dB below the maximum value. In this plot, the maximum is at 1.5 dB so
the 3 dB point is when the curve equals −1.5 dB.

A bel (named for Alexander Graham Bell) is a factor of 10 change in power. This is commonly used
to measure quantities such as gain and attenuation. For example, the attenuation, in bels, is

Abel = log10(Pout/Pin) .

Since P ∝ V 2 for resistive loads, we have

Abel = log10((Vout/Vin)2)

Abel = 2 log10(| Vout/Vin |).

A decibel is a tenth of a bel, so the numerical value of the attenuation in decibels is ten times more
than it is in bels, so

Adecibel = 20 log10(| Vout/Vin |). (2.30)

Rather than quoting a fall-off or rise in decibels per decade, one sometimes encounters decibels per
octave. One octave in frequency is a factor of 2. It is easy to show that 20 dB/decade is the same as
6 dB/octave.

In Figure 2.4, the gain is constant over a large frequency range, and then starts to fall off along what
looks like a straight line. What is the physical meaning of this straight-line fall-off? We could fit it with
an expression of the form

20 dB log [| G(ω) |] = α+ β log f

log [| G(ω) |] =
α

20 dB
+

β

20 dB
log f

| G(ω) | = constant · f β
20 dB (2.31)

Thus, the gain has the functional form of a power law of the frequency. If p is the power or exponent,
then a power law has the form

| G | ∝ fp. (2.32)

The slope parameter, β, in equation 2.31 is usually measured in units of dB /decade—by how many db
does it change when the frequency changes by a factor of 10 (one decade)? For this particular plot, the
exponent p in equation 2.32 is

p = β/(20 db) .

If we measure a slope of β = −20 dB/decade, then the exponent is just p = −1, and the gain falls off as
1/f . If we measure twice this slope, β = −40 dB/decade, then the gain falls off as 1/f2.

Circuits in which the gain rapidly falls off with frequency are referred to as filters. One goal of such
circuits is to pass all frequencies on one side of a cut-off frequency, and to exclude all frequencies on the
other side. How well the circuit does this is measured by the slope of the fall-off on a Bode plot.

Related to the Bode plot is one which looks at the phase difference between the input and output
voltages as a function of log(f). The lower portion of Figure 2.4 shows such a plot corresponding to
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the Bode plot above it. In this particular case, the phase difference is 0◦ for low frequencies, and then
falls to −90◦ as the frequency becomes very large. At the −3 db point, the phase difference has fallen
to −45◦.

The gain is in general a complex number and can be expressed as

G(ω) = | G(ω) | ejφ(ω) . (2.33)

Both the Bode and phase plots taken together fully characterize the gain function of a circuit. As such,
Bode plots are a very important tool in analyzing circuits involving time-varying voltages. If we return
to upper plot in Figure 2.4, the fact that the horizontal line is at 1.5 db tells us that for low frequencies,
the magnitude of the gain is:

G = 101.5/20

G ≈ 1.2.

If the circuit has a gain of 1, then 20 dB log | G |= 0, if the circuit has a gain of 10, then 20 dB log | G |=
20 dB. A gain of 100 yields 40 dB. Similarly, if the gain is only 0.1, then the curve will read −20 dB.
Second, a phase difference of 0 corresponds to a situation in which the input and output voltage are
exactly in phase. In this sense, we could characterize a wire as having a gain of 1.0 and a phase of
0◦. It just passes the input voltage through. As we proceed through this course, we will rely on the
Bode plots and the phase versus log(f) to show the behavior of our circuits as a function of frequency.
Understanding these is crucial to this course.

2.6 The Impedance of Circuit Elements

We are now in a position to determine the impedances of various components that we will use in circuits:
resistors, capacitors and inductors.

In the case of a resistor, we have the simple expression that v = iR, or that ZR = R. The impedance
of a resistor is real, and just the value of the resistance. This means that in a resistor, the current and
voltage are in phase (there is no phase difference between the two).

Next, let us consider a capacitor. We recall from basic electricity and magnetism that the charge
stored in a capacitor, q, is the voltage across the capacitor plates, v, times the capacitance, C. We also
know that the time derivative of the charge, dq/dt, is the current, i. From this, we get:

v(t) =
1

C
q(t)

dv

dt
=

1

C

dq

dt
dv

dt
=

i(t)

C

v(t) =
1

C

∫

i(t)dt

If we consider a current i(t) = ioe
jωt flowing through the capacitor, then the voltage across the capacitor

is given as:

v(t) =
io
C

∫

ejωt

=
io
jωC

ejωt

From this, we can compute the impedance of a capacitor to be:

ZC(ω) =
v(t)

i(t)
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ZC(ω) =

[

io
jωC

ejωt

]

/
[

ioe
jωt
]

ZC(ω) =
1

jωC
. (2.34)

We can rewrite this slightly if we note that 1
j = −j, and that −j = e−j π

2 . These can be combined to

give us that ZC = 1
ωC e

−j π
2 .
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Figure 2.5: The upper plot shows the voltage and current as a function of ω · time in a capacitor. The
current is said to lead the voltage by 90◦. The lower plot shows the voltage and current as a function of
ω · time in an inductor. The current is said to lag the voltage by 90◦.

Finally, we examine the inductor. The voltage across an inductor is given as vL(t) = L di
dt . If we have

a current i(t) = ioe
jωt flowing through an inductor, then the voltage across the inductor is given as:

vL(t) = L
d

dt
ioe

jωt

vL(t) = jωioLe
jωt.

From this, we can compute the impedance of an inductor to be:

ZL(ω) =
v(t)

i(t)

ZL(ω) =
[

jωLioe
jωt
]

/
[

ioe
jωt
]

ZL(ω) = jωL. (2.35)
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Similarly, if we note that j = ej π
2 , then we can write that the impedance is ZL(ω) = ωLej π

2 . The results
for the resistor, capacitor and inductor are summarized in Table 2.1.

Component Impedance
R R R
C 1

jωC
1

ωC e
−j π

2

L jωL ωLej π
2

Table 2.1: Impedances of resistors, capacitors and inductors.

For a current given as i(t) = io cosωt, we show the resulting voltage in both a capacitor and an
inductor in Figure 2.5. The upper plot shows the voltage in the capacitor lagging the current in the
capacitor by 90◦. The lower plot shows the voltage across the inductor leading the current in the
inductor by 90◦.

vC(t) = i(t) · ZC

vC(t) = ioe
jωt 1

ωC
e−j π

2

vC(t) =
io
ωC

ej(ωt−π
2 ) (2.36)

Example: From basic electricity and magnetism, we know that the equivalent capacitance of two
capacitors in parallel is just the sum of the two capacitors.

Cparallel
eq = C1 + C2.

For two capacitors in series, the equivalent capacitance is given as

Cseries
eq =

(

1

C1
+

1

C2

)−1

.� �ÿ� ��
C1

�� ��
C2

� �ÿ� � �� �ÿ� ��
Ceq

� �ÿ�� �
Figure 2.6: Two capacitors, C1 and C2, in series and the corresponding equivalent capacitance, Ceq.

However, equations 2.25 and 2.26 say that impedances add like resistors. How can these two state-
ments be consistent? Let us consider two capacitors, C1 and C2 in series as shown in Figure 2.6. The
two impedances are Z1 = 1

jωC1
and Z2 = 1

jωC2
. We can write that the equivalent impedance must be

Zeq =
1

jωCeq

where Zeq is given as

Zeq = Z1 + Z2 .

We can rewrite this as follows:

1

jωCeq
=

1

jωC1
+

1

jωC2

1

jω

(

1

Ceq

)

=
1

jω

(

1

C1
+

1

C2

)

1

Ceq
=

1

C1
+

1

C2
.
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This yields the result in equation 2.37, which is the expected form for two capacitors in series.

Ceq =
C1C2

C1 + C2
(2.37)

Example: Any real inductor not only has an inductance L, but also has some internal resistance, RL.
We can schematically treat this as an inductor L and a resistor RL in series as shown in Figure 2.7.
The equivalent inductance of such a combination is given as:

Zeq = ZL + ZR (2.38)

Zeq = jωL+RL. (2.39)

The magnitude of the impedance is

| Zeq | =
√

(ωL)2 + (RL)2, (2.40)

and the phase is

φL = tan−1

(

ωL

RL

)

(2.41)

which allows us to write that

Zeq =
√

(ωL)2 + (RL)2 ejφL . (2.42)� �ÿ�� ��
Zeq

�� �ÿ� � � �ÿ� ��
L
�� ��

RL

� �ÿ� �
Figure 2.7: A real inductor.

We can now examine Zeq as a function of the frequency, ω. As ω → 0, we find that Zeq → RL, while
as ω → ∞, we find that Zeq → ωL. If we were to plot this, we would most likely be interested in values
of frequency that spanned many orders of magnitude. Hence it would be convenient to plot Zeq versus
log(f) rather than f . In order to do this, we will rewrite the expression for | Zeq | as

| Zeq |
RL

=
√

1 + (ωL/RL)2 .

In Figure 2.8(a), we plot the ratio of Zeq/RL versus ω on a log-log plot. The frequency, ω, is given in
units of RL

L . As with our Bode plots, to fully understand the behavior of Z, we should also make a plot
of the phase. This is shown in Figure 2.8(b). For low frequencies, the phase is close to 0◦, the impedance
is nearly real and equal to the value of the internal resistance, RL. As the frequency increases, the phase
climbs steadily towards 90◦. It passes through 45◦ when ω = RL

L .
While we often treat an inductor as a pure value, the reality is that it will always have an associated

resistance. Only in the limit of large frequency, compared to RL/L, can we ignore the resistance.

Example: Let us look at a real inductor, which has inductance L and resistance RL, and apply some
voltage v(t) = Vine

jωt to it. If we measure the voltage across the inductor, we need to take the real part
of the expression for the voltage, which we can expand as:

v(t) = Vin cos (ωt) + jVin sin (ωt) .
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Figure 2.8: Plot (a)is a log–log plot of Zeff/RL versus ω, (in units of RL/L). Plot (b) is the phase, (in
degrees) versus ω, (in units of RL/L), plotted on a linear-log plot.

Taking the real part yields just gives us the cos (ωt) part of the expression; we measure:

vmeas(t) = Vin cos (ωt) .

Now let us examine the current through the inductor. The current is i(t) = v(t)/Z, where the impedance
of the inductor is ZL = RL + jωL. In order to proceed, we will express the impedance in polar form:

ZL = | ZL | ejφL .

The magnitude of the impedance is

| ZL | =
√

R2
L + ω2L2 .

The phase angle can be computed as the arc-tangent of the imaginary part of ZL divided by the real
part. This gives

φL = tan−1

(

ωL

RL

)

.

It is now possible to write the current in the inductor as

i(t) =
Vine

jωt

| ZL | ejφL

i(t) =
Vin

| ZL | · e
j(ωt−φL) .
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If we now measure the current, we need to take the real part of the expression. If we expand the complex
exponential into sines and cosines, we get:

i(t) =
Vin

| ZL | · [cos (ωt− φL) + j sin (ωt− φL)] ,

from which we easily see that the measured current is:

imeas =
Vin

| ZL | · cos (ωt− φL) .

Finally, if we are interested in the power dissipated in the inductor, we can use P = v(t) · i(t), however,
again we need to be careful. The current and voltage that we use here are the measured values, not the
complex values. This gives that:

P (t) =
V 2

in

| ZL | · cos (ωt) · cos (ωt− φL) .

In reality, we are probably not interested in the instantaneous power, but rather the average power over
one full cycle of the voltage. This is then

Pavg =
1

T

∫ T

0

P (t)dt

where T is the length of one full cycle, or the period (T = 2π
ω ). We can expand this to give

Pavg =
ω

2π

V 2
in

| ZL |

∫ t= 2π
ω

t=0

[cos (ωt) · cos (ωt− φL)] dt

Pavg =
ω

2π

V 2
in

| ZL |

∫ t= 2π
ω

t=0

[

cos2 (ωt) cosφL + cos (ωt) sin (ωt) sinφL

]

dt

Pavg =
V 2

in

| ZL | cosφL
1

2

Pavg =
1

2
I2RL

where I = Vin/ZL. For an inductor with no internal resistance, RL = 0, then φL = 90◦ and cosφL = 0.
The average power would be zero. If we use the trigonometric identity that

cos
[

tan−1 (x)
]

=
1√

1 + x2
,

then we can write

cosφL =
1

√

1 + ω2L2/R2
L

cosφL =
RL

| ZL |

which then gives the average power as

Pavg =
RLV

2
in

2 | ZL |2 .

As RL → 0, this goes to zero as we expected.
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2.6.1 Power Dissipation

Let us consider an impedance Z = R+ jX which has a current i(t) = i0e
jωt+φ flowing through it. Let

us define θ(t) = ωt+ φ which then gives that

i(t) = i0e
jθ(t)

i(t) = i0 [cos θ(t) + j sin θ(t)]

The voltage across the impedance will be v(t) = i(t)Z, which we can written as

v(t) = i0 [cos θ(t) + j sin θ(t)] · [R+ jX]

v(t) = [i0R cos θ(t) − i0X sin θ(t)] + j [i0R sin θ(t) + i0X cos θ(t)]

The average power dissipated is the average over one cycle of the real part of the current times the real
part of the voltage. Thus

Pavg =
1

T

∫ T

0

Re [i(t)]Re [v(t)]

Pavg =
ω

2π

∫ 2π/ω

0

i0 cos θ(t) [i0R cos θ(t) + i0X sin θ(t)] dt

Pavg =
ω

2π

∫ 2π/ω

0

[

i20R cos2 θ(t) + i20X cos θ(t) sin θ(t)
]

dt

We note that the average of a sine times a cosine over a full cycle is zero, while that of a cosine squared
over a full cycle is 1

2 . This gives us

Pavg =
1

2
i20R .

The average power dissipated in an impedance Z = R+ jX is independend of the imaginary part of the
impedance. It only depends on the real part, or the resistance. Power is dissipated in resistors, but not
in capacitors or pure inductors.

2.7 Time Domain Analysis

When analyzing time-dependent voltages, we can consider their behavior as functions of time, or as
functions of frequency. In this section, we will focus on the time dependence, or the so-called time
domain. For a simple oscillatory voltage given as v(t) = vo cosωt, the voltage is just a cosine function
of the time. However, even with a voltage source that is a simple cosine function, opening or closing a
switch in a circuit may introduce additional terms to the the voltage that may die out over some finite
time.

2.7.1 The RC Circuit

Let us consider the circuit shown in Figure 2.9. Initially, the switch is open, there is no voltage across
the capacitor (VC = 0) and no current flows through the circuit. At time t = 0, the switch is closed.
Current flows through the circuit and charges up the capacitor. Eventually, there is a voltage of VC = Vo

on the capacitor and the current stops flowing. We want to examine the voltage difference between A
and B as a function of time after the switch is closed.

We can use one of the Kirchhoff rules to write that the sum of all the voltage drops as we go around
the circuit must be zero. This gives us the equation

0 = Vo −
q(t)

C
− i(t)R



52 CHAPTER 2. ALTERNATING-CURRENT CIRCUITS

�Vo

��� ��S1

Switch
� ��

C

�� �ÿ���R ��ÿ���������� ��� �� �òA�� �òB
Figure 2.9: A RC circuit.

which, since i(t) = dq/dt, can be rewritten as

Vo

R
=

dq(t)

dt
+

1

RC
q(t). (2.43)

Because this is a first-order linear differential equation in q, we expect that the solution will be an
exponential. We also anticipate that at time t = 0, the charge is q(0) = 0, and it then increases up to
some maximum value. As such, we will guess a solution of the form given in equation 2.44 where Qf is
the final charge on the capacitor and α has dimensions of inverse time.

q(t) = Qf

(

1 − e−αt
)

(2.44)

dq(t)

dt
= αQfe

−αt. (2.45)

Putting equations 2.44 and 2.45 into equation 2.43, and then rearranging slightly, we arrive at the
expression

Vo

R
=

(

αQf − Qf

RC

)

e−αt +
Qf

RC
.

In order to have a solution that is valid for all times, t, the term that multiplies the exponential must
be zero and the remaining terms must be equal on the two sides of the equation. In other words

0 = αQf − Qf

RC

0 =
Vo

R
− Qf

RC
.

This then yields

α =
1

RC
and

Qf = C · Vo.

Using these constants, we can determine q(t) from equation 2.44 and i(t) from equation 2.45. The
voltage across the capacitor is then vC(t) = q(t)/C, while that across the resistor is vR(t) = i(t)R. This
gives

vC(t) = Vo

(

1 − e−t/RC
)

(2.46)

vR(t) = Voe
−t/RC . (2.47)

The two voltages are plotted in Figure 2.10 as a function of time. Note that for all times, the sum of vC

and vR is equal to Vo—just our Kirchhoff loop equation. The product of RC is given a special name,
the characteristic time, and is often written using the symbol τ . At a time of t = τ , the exponential
factor is just e−1 ≈ 0.37. For each characteristic time interval, the exponential falls by another factor
of ≈ 0.37.
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Figure 2.10: The voltage across the resistor and capacitor as a function of time for the circuit in Figure 2.9.
The time is given in units of the characteristic time, τ = RC, while the voltage is given as a fraction of the
voltage of the source, vo. The switch is closed at time t = 0.

2.7.2 The RL Circuit

�Vo

��� ��S1

Switch
� ��

R

�� �ÿ���L ��ÿ������������ ��� �� �òA�� �òB
Figure 2.11: An RL circuit.

We can examine a similar circuit involving a resistor and an inductor, as shown in Figure 2.11.
Initially, no current flows through the circuit. At time t = 0, we close the switch, and current starts to
flow. As with the previous case, we can write down the Kirchhoff loop equation as we go around the
loop:

0 = Vo −R i(t) − L
d i

dt

which can be rewritten as:

d i

dt
+
R

L
i(t) =

Vo

L
. (2.48)
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This equation is quite similar to equation 2.43, so we will guess a similar form for the solution, but for
i(t).

i(t) = if
(

1 − e−αt
)

d i

dt
= αife

−αt.

Inserting these equations into equation 2.48, and then rearranging the parts, we find:

0 = ife
−αt

(

α− R

L

)

+
1

L
(Rif − Vo)

In order for this equation to be true for all times, the terms in parentheses must be zero. This then
yields that:

if =
Vo

R
and

α =
R

L
.

We can use these to solve for the current as a function of time. This can in turn be used to determine
the voltage as a function of time across the resistor and the inductor.

vR(t) = Vo

(

1 − e−
R
L t
)

(2.49)

vL(t) = Vo e
−R

L t (2.50)

As with the RC circuit before, we can define a characteristic time of the RL circuit to be τ = L/R.
The voltage falls off 1

e for every characteristic time interval, τ .

2.7.3 Characteristic Times

We might note at this point that the various time-dependent circuits have characteristic times associated
with them. It is often possible to deduce these times purely by dimensional analysis. We need only find
a combination of components (more precisely, of units) which yields time units. For an RC circuit, R ·C
has dimensions of Ω · F = s. For the LR circuit, recall that the MKS unit of inductance is the Henry.
H. Since VL = L di

dt , 1H = 1V · s/A, so L/R will have dimensions of time.

In the two previous circuits, we see that characteristic times appear in decaying exponentials. If
we look at the circuits on time scales much longer than the characteristic times, the solutions will be
steady-state—the exponential factors e−t/τ will be essentially e−∞ ≈ 0. We could also consider time
scales much smaller than the characteristic times, where by much smaller we mean a very small fraction
of τ (0.1τ , 0.01τ , · · · ). In these situations, we could expand the exponential and only keep the first and
second term

e−t/τ = ≈ 1 − t

τ
. (2.51)

In such a limit, the time dependencies are all linear.

As we proceed, we will find that, corresponding to the characteristic times we have seen, there will
be characteristic frequencies given as ωc = 1/τ . A circuit’s response to frequencies either much less or
much greater than the characteristic frequencies will be quite different. We will return to this in the
next chapter.
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Figure 2.12: An LC circuit.

2.7.4 The LC Circuit

If we now consider an LC circuit as shown in Figure 2.12, we might start by guessing what the char-
acteristic time should be. We are looking for some combination of Henrys and Farads that give time
units. Recall that:

1 Farad = (1Coulomb) / (1Volt)

Thus the product of L · C will have dimensions of time squared, so we might anticipate that the
characteristic time will be

τ =
√
LC .

At time t = 0 we close the switch, but we are told the the charge on the capacitor at this time is
zero and the current through the inductor is also zero. As in the previous two cases, we can write the
Kirchhoff loop equation for the circuit:

0 = Vo −
q(t)

C
− L

di(t)

dt
.

Since di/dt = d2q/dt2, we can rearrange the equation to yield:

d2q(t)

dt2
+

1

LC
q(t) =

Vo

L
. (2.52)

Second-order differential equations of this form have oscillatory solutions. We will try one of the form:

q(t) = qo +A cosωot+B sinωot

d2q(t)

dt2
= −ω2

o (A cosωot+B sinωot)

which when put into equation 2.52 gives

Vo

L
=

[

1

LC
− ω2

o

]

[A cosωot+B sinωot] +
qo
LC

The only way that this equation can be true for all possible times is for the part that multiplies the
trigonometric functions to be zero and the remaining parts to be equal.

ωo =
1√
LC

(2.53)

qo = C · Vo (2.54)
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If we now put all of this together, we get that

q(t) = VoC + [A cosωot+B sinωot]

i(t) = ωo [B cosωot−A sinωot] .

Applying the condition that at time t = 0, i(0) = 0 gives that B = 0. If we then apply the condition
that at t = 0, q(0) = 0, we find that VoC +A = 0 or A = −VoC. This then gives

q(t) = VoC [1 − cosωot]

i(t) = VoCωo sinωot

di(t)

dt
=

Vo

L
cosωot

(where we have made use of ω2
o = 1/LC in the last equation). We can then use these to evaluate the

voltages across the capacitor and the inductor as a function of time. Doing so, we find

vC(t) = Vo [1 − cosωot] (2.55)

vL(t) = Vo cosωot (2.56)

These voltages are plotted in Figure 2.13. It is interesting to note that the voltage oscillates with
frequency ωo = 1/

√
LC, and that the voltage across the capacitor gets larger (by a factor of two) than

the voltage from the source. We also see that the characteristic time, τ =
√
LC, that we predicted

before doing this example corresponds to 1/ωo.
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Figure 2.13: The voltage as a function of time across the capacitor and inductor in Figure 2.12.
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2.8 Fourier Analysis

We will consider some function, f(t), where f(t) is bounded and is periodic with period T , (f(t +
T ) = f(t)). If, over a single period, T , f(t) is continuous except for possibly a finite number of jump
discontinuities and there are a finite number of maxima and minima, then it is possible to represent
f(t) as a Fourier series as given in equation 2.57:

f(t) =
ao

2
+

∞
∑

n=1

[

an cos

(

2nπt

T

)

+ bn sin

(

2nπt

T

)]

. (2.57)

This series will converge to f(t) at every point where f(t) is continuous, and to 1
2 (f(t+) + f(t−)) (the

average of the left-hand and right-hand limits across the discontinuity) for every point where f(t) is
discontinuous. The coefficients in the sum are determined as follows:

an =
2

T

∫ T/2

−T/2

f(t) cos

(

2nπt

T

)

dt n = 0, 1, 2, 3, · · · (2.58)

bn =
2

T

∫ T/2

−T/2

f(t) sin

(

2nπt

T

)

dt n = 1, 2, 3, 4, · · · (2.59)

An alternate formulation is in terms of phase-shifted-cosine functions. This is obtained by rewriting
equation 2.57 as in equation 2.60.

f(t) =
ao

2
+

∞
∑

n=1

[

cn cos

(

2nπt

T
+ φn

)]

(2.60)

The coefficient cn and the phase φn can be obtained from an and bn

cn =
√

a2
n + b2n (2.61)

φn = tan−1

(

an

bn

)

(2.62)

The original coefficients can be obtained from the latter two as

an = cn cosφn (2.63)

bn = cn sinφn. (2.64)

The expansion in equation 2.60 can be obtained from the Exponential Fourier Series as in equation 2.65.

f(t) =
1

2

n=∞
∑

n=−∞
cne

jωnt (2.65)

in which

cn =
2

T

∫ T/2

−T/2

f(t)e−jωntdt (2.66)

where ωn = n · (2π/T ).
Figure 2.14 are shows several waveforms that are commonly encountered in electronics as well as

their Fourier transforms written in the form of equation 2.57. Let us initially look at the first three wave
forms: the square wave, the triangle wave and the the saw-tooth wave. All three of these functions are
odd, f(−t) = −f(t). The Fourier transforms of these functions only involve sines, not cosines. This
makes sense in that sin(−x) = − sin(x); the sine function is odd. This is a general property, namely if
f(t) is odd, then all the an terms in equation 2.58 will be zero.
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f(t) = 4
π ·∑∞
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T f(t) = 8
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t
−1

+1
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∑∞
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1
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T

)

Figure 2.14: Fourier transforms of several functions typically seen in electronics. (a) is a square-wave
function, (b) is a triangle wave, (c) is a saw-tooth wave and the (d) is the absolute value of a sine wave.

If we now look at the fourth example, f(t) =| sin(2πt/T ) |, this function is even: f(−t) = f(t). Its
Fourier transform only involves cosines. In the case where we have an even function, all the bn terms in
equation 2.59 will be zero.

Let us now ask how quickly the sum in equation 2.57 converges. We begin by looking at the
f(t) =| sin(2πt/T ) | example in Figure 2.14. For this waveform,

| sin(2πt/T ) | =
4

π
·
(

1

2
−

∞
∑

n=2,4,6,···

cosn 2πt
T

(n+ 1)(n− 1)

)

. (2.67)

The first six terms in the sum are

n = 0
2

π

n = 2 = − 4

π

1

3
cos (4πt/T )

n = 4 = − 4

π

1

15
cos (8πt/T )

n = 6 = − 4

π

1

35
cos (12πt/T )

n = 8 = − 4

π

1

63
cos (16πt/T )

n = 10 = − 4

π

1

99
cos (20πt/T ) .

Figure 2.15 shows six plots corresponding to the inclusion these terms compared to the actual function.
These go from (a) which shows the constant term to (f) which shows inclusion of terms up through
n = 10. It is interesting to note how quickly this converges; after six terms there is little difference
between the truncated series and the function.
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Figure 2.15: The function | sin (2πt/T ) | and progressively more accurate approximations to the function.

The Fourier expansion is given in Figure 2.14 as f(t) = 4
π ·
(

1
2 −∑∞

n=2,4,6,···
1

(n+1)(n−1) cosn 2πt
T

)

. The solid

magenta line is the function while the blue dashed curve is the approximation for progressively more terms
in the expansion. (a) has the n = 0 term, (b) has n = 0, 2, (c) has n = 0, 2, 4, (d) has n = 0, 2, 4, 6, (e) has
n = 0, 2, 4, 6, 8 and (f) has n = 0, 2, 4, 6, 8, 10. In this particular example, there is little difference between
the approximation in (f) and the actual function.

Now let us consider the square-wave function given as the first example in Figure 2.14. Here the
series is

f(t) =
4

π
·

∞
∑

n=1,3,5,···

1

n
sinn

2πt

T
.

Again, we compute the first six terms in this series.

n = 1
4

π
sin (2πt/T )

n = 3
4

π

1

3
sin (6πt/T )

n = 5
4

π

1

5
sin (10πt/T )
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n = 7
4

π

1

7
sin (14πt/T )

n = 9
4

π

1

9
sin (18πt/T )

n = 11
4

π

1

11
sin (22πt/T )

First we note that the coefficient is falling off much more slowly in this case than in the previous. Here
it goes as 1

n whereas before is was as 1
n2 . We anticipate that the convergence of this series will be

much slower. In Figure 2.16 we produce the same six plots that we had previously. As expected, the
convergence is not nearly as good. The very sharp edges require a large number of terms. The other
effect that we see is the small oscillations (ringing) of the approximation around the true function.
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Figure 2.16: The square wave function and progressively more accurate approximations to the function. The

Fourier expansion is given in Figure 2.14 as f(t) = 4
π ·
(

∑∞
n=1,3,5,···

1
n sinn 2πt

T

)

. The solid magenta line is the

function while the blue dashed curve is the approximation for progressively more terms in the expansion. (a)
has the n = 1 term, (b) has n = 1, 3, (c) has n = 1, 3, 5, (d) has n = 1, 3, 5, 7, (e) has n = 1, 3, 5, 7, 9 and
(f) has n = 1, 3, 5, 7, 9, 11. In this particular example, even going out to n = 11, there are still observables
deviations between the approximation and the actual function.

If we look at the other two examples, the triangle wave and the saw-tooth function, we find the
former converges as 1

n2 while the latter converges as 1
n . The slower converging saw-tooth function has
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the sharp edge at T/2, while the triangle is a more-smoothly varying function. The bottom line from
this is that very sharp edges require a lot more terms in the series.

2.8.1 Filtering Signals

If we now consider some circuit that filters out specific frequencies, we can ask about the consequences of
such filtering on various periodic functions. We imagine a filter that lets high-frequency pieces through,
but cuts out low-frequency components. In Figure 2.17 are shown what would happen to equation 2.67
as we remove the low-frequency parts of the wave. In this particular case, not much of the wave remains
after we start removing the n = 2 and n = 4 terms in the sum.
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Figure 2.17: These plots show the Fourier expansions for | sin (2πt/T ) | from which we have removed the
low-frequency components. The solid-magenta curve is the actual wave form. The dashed-blue curve is what
remains after we have filtered out low frequencies. (a) has no filtering, (b) has the n = 0 term removed, (c)
has the n = 0, 2 terms removed and (d) has the n = 0.2.4 terms removed.



62 PROBLEMS

Problems

1. What is the RMS voltage for a square wave voltage defined by the following equations?

v(t) = vo cos(t) > 0

v(t) = −vo cos(t) < 0

v(t) = 0 cos(t) = 0

2. What is the RMS voltage for a saw-tooth wave voltage defined by the following equations?

v(t) = vo(1 − t) 0 < t ≤ 2

v(t) = vo(3 − t) 2 < t ≤ 4

v(t) = vo(5 − t) 4 < t ≤ 6

v(t) = · · ·

3. On a set of axes representing the complex plane, draw the complex number z = 5 + 3j. Then,
compute z∗, z2, z × z∗, z + z∗, and z − z∗. Do each calculation using symbols (i.e., z = x+ jy),
then substitute the numerical values.

4. What is the magnitude of the number z = ejθ?

5. Plot the point ejπ/3 in the complex plane. Show and calculate the real and imaginary parts.

6. Calculate the polar coordinates of the number z = 5 + 3j. Write this number as a complex
exponential, i.e., in polar form.

7. Given z1 = a+ jb and z2 = c+ jb, express the following in Cartesian form: (a) z1 · z2 , (b) z1 · z∗2
, (c) z1/z2 , (d) 1

z1
+ 1

z2
, (e) z1 · z1 and (f) z1 · z∗1 .

8. Given the complex number z = 1√
2
− j 1√

2
, determine the following in Cartesian coordinates: (a)

z2 , (b) z3 and (c) z4. (d) Express z in polar form and repeat a, b and c.

9. Consider the complex number z = −2+2j. What is
√
z in Cartesian coordinates? Hint: Express

z in polar coordinates in order to take the square root.

10. Compute the following derivative using both complex notation and the explicit cosine function:

∂2

∂x2
Re
{

ej(kx−ωt)
}

(2.68)

Show that you also get the same answer if you factor the exponential as suggested by equation.
2.14.

11. What is |Aej(kx−ωt)|? How does this compare to |A cos(kx − ωt)|? How do you explain this
contrast?

12. An impedance Z = 1000 (1 + j) Ω is connected to an AC voltage source of amplitude 10V and
frequency f = 60Hz as shown in Figure 2.18. You may assume that at t = 0, the AC voltage is at
a maximum. (a) What is the current, i(t), in the impedance? (b) What is the power dissipated
during one AC cycle in the impedance?

13. An impedance Z is built from a resistor and capacitor connected in parallel. When connected
to an AC voltage source with a frequency of f = 60Hz, the impedance has a numerical value
of Z = 1000 (1 − j) Ω. The impedance is connected as shown in Figure 2.19, where the voltage
source has an amplitude of 10V and at t = 0, the AC voltage is at a maximum. (a) What are the
values of R and C? (b) What is the power dissipated during one AC cycle in the impedance? (c)
What is the current in the resistor, iR(t)? (d) What is the current in the capacitor, iC(t)? (e)
What fraction of the power from part b is dissipated in the resistor and the capacitor?
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������� ����Z ������� ���
Figure 2.18: The circuit for problem 12./v(t)

���������� ����ÿ�� ��R �� �ÿ���������� ���� �� ����C ���� �
Figure 2.19: The circuit for problem 13.

14. A capacitor C and inductor L are connected in series as shown in Figure 2.20. What is the
impedance, Z, of the combination? At what frequency, ω, is the magnitude of the impedance
zero? ð� ��

C

� ��
L
� �ò

Figure 2.20: The circuit for problem 14.

15. A capacitor C, inductor L and resistor R are connected in series as shown in Figure 2.21. What is
the impedance, Z, of the combination? At what frequency, ω, is the magnitude of the impedance
a minimum? ð� ��

R

� ��
C

� ��
L
� �ò

Figure 2.21: The circuit for problem 15.

16. A capacitor C and inductor L are connected in parallel as shown in Figure 2.22. What is the
equivalent impedance, Z, of the circuit? Express your answer as Z = R+ jY where R and Y are
real numbers. ð� �ÿ����� ��C �� ����ÿ� �ò���� ��

L
� ����

Figure 2.22: The circuit for problem 16.

17. A resistor R, capacitor C and inductor L are connected in parallel as shown in Figure 2.23. What
is the equivalent impedance, Z, of the circuit? Express your answer as Z = R+ jY where R and
Y are real numbers. At what frequency, ω, is the phase of the impedance equal to 0◦? What is
the magnitude of the impedance at this frequency?
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� �
Figure 2.23: The circuit for problem 17.

18. A resistor R, capacitor C and inductor L are connected as shown in Figure 2.24. What is the
equivalent impedance, Z, of the circuit? Express your answer as Z = R+ jY where R and Y are
real numbers. At what frequency does the phase of the impedance equal 0◦?ð� �ÿ����� ��C �� ����ÿ� ��

L
� �ò���� ��

R

� ����
Figure 2.24: The circuit for problem 18.

19. Two resistors, R, and capacitor C and inductor L are connected as shown in Figure 2.25. What
is the equivalent impedance, Z, of the circuit? Express your answer as Z = R+ jY where R and
Y are real numbers. At what frequency does the phase of the impedance equal 0◦?ð� �ÿ����� ��C �� ����ÿ� �ÿ���� ��L

� ����ÿ� �ò���� ��
R

� ���� ���� ��
R

� ����
Figure 2.25: The circuit for problem 19.

20. The circuit shown in Figure 2.26 consists of a battery of constant voltage, (2.0V ), two unknown
components and a switch. The output voltage is measured across the nodes a and b. Figure 2.26
below shows a scope trace that is measured across the outputs of the circuit above. The trace is
generated by closing the switch at time t = 0 and measuring the output voltage as a function of
time. The time is measured in seconds and the output voltage is measured in Volts. (a) Sketch
the voltage across circuit element A as a function of time. (b) What is the characteristic time
(roughly) of the circuit? You can read this off the plot. (c) If A and B are single components that
we have studied in lab, there are at least two circuits that will produce the above behavior. Sketch
both of them. (d) You measure the equivalent resistance of the the two elements as combined in
series and find a value of roughly 100Ω. Which of your two circuits is correct, and what are the
two components, including their values?

21. You plan to build the AC source circuit shown on the left side of Figure 2.27. The voltage v1(ω) is
assumed to be an ideal voltage source. (a) Draw and label the Thèvenin equivalent circuit as seen
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Figure 2.26: The circuit and scope trace for problem 20.

looking left into the output terminals. (b) Suppose you now want to measure the output of the
above circuit with your oscilloscope. The equivalent circuit of a Tektronix TDS 3032 oscilloscope
input is shown in the right side of Figure 2.27. The resistor has a value of Rs = 10MΩ and the
capacitor has a value of Cs = 8pF . Write and simplify an expression for the input impedance of the
oscilloscope; write this as a resistance times a dimensionless quantity. What is the characteristic
frequency of this impedance? Make a log-log sketch for the magnitude of the impedance, | Zs |,
versus frequency, ω. (c) At what frequency will | Zth | of the source equal | Zs | of the scope? (d)
Take vs(ω) to be the voltage across the scope probe. Sketch the Bode plot of | vs | / | vth |. What
is the −3dB frequency in Hz? Your sketches should show the low- and high-frequency asymptotic
behavior and the correct characteristic frequencies./V1(ω)

���� ��1kΩ � �ÿ��� 1kΩ��ÿ������� ��� ���� �ò���� �òvo(ω) � Rs

��ÿ���� �ð ��ÿ���� �ð ������ ����� Cs������� �
Figure 2.27: The circuits for problem 21.

22. Show that a fall-off of 6 dB/octave is equal to 20 dB/decade. (Recall that an octave is a factor of
two in frequency, while a decade is a factor of ten.)

23. If the curve on a Bode plot is falling off at 60 dB/decade, what is the frequency dependence of the
gain?



66 PROBLEMS

24. A circuit has a gain that goes as

G(ω) =
A√
ω
.

What are the dimensions of the constant A? What is the slope of the Bode plot in dB/decade?

25. Determine the Fourier transform of the function f(t) = sin2 (2πt/T ). How many terms are needed
to produce a good approximation?

26. Determine the Fourier transform of the function f(t) = sin3 (2πt/T ). How many terms are needed
to produce a good approximation?

27. Determine the Fourier transform of the function f(t) = sin4 (2πt/T ). How many terms are needed
to produce a good approximation?



Chapter 3

Filtering Circuits

3.1 Circuit Analysis in the Frequency Domain

While analysis of circuits in the time domain, as discussed in chapter 2, does provide useful information,
the more typical situation is to examine the response of a circuit in the frequency domain. At some
level, we have already discussed this in terms of the gain of a circuit. For the black box circuit shown
in Figure 3.1, we write down the relationship between vi and vo as in equation 3.1.

vo(ω, t) = G(ω)vi(ω, t) (3.1)

C

DB

A

Box
Black

Figure 3.1: A black-box circuit with two inputs, A and B, and two outputs, C and D.

The gain, G(ω), is a function of the frequency that needs to be determined for each circuit. In
addition to the gain of a circuit, two other characteristics are important: the input impedance and the
output impedance. The two Thèvenin equivalent circuits shown in Figure 3.2 describe what these mean.
Looking into the input of a black box, the circuit will appear as some load impedance, Zin

th , or just the
input impedance, Zin. Looking back into the black box through the output, we will most likely see some
voltage, vth, and an output impedance, Zout

th , or just Zout.
We will generally characterize circuits byG, Zin and Zout. If we think back to our work with constant-

voltage circuits, we can identify a few desirable characteristics of the input and output impedances.
First, we would like the input impedance, Zin, to be large, particularly when compared to the output
impedance of any circuit connected to the input of this circuit. If this is true, then the output voltage
will not be pulled down by this circuit. Second, we would like the output impedance to be small,
particularly when compared to any loads that we connect the the circuit. We will see that it would be
very desirable to design our circuits with almost infinite input impedance and zero output impedance.
In reality, this is very difficult to do without more complicated circuit elements such as transistors and
op-amps.

Now we are ready to calculate the gain functions of various circuits. We will start with low-pass and
high-pass filters, and then move on to various RLC circuits. We will note that when we are determining
the phase difference between the input and the output, we normally have an expression of the form

67
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�Zin
th

����� �ÿ ����� �ÿ
B

A

(a) /vth(ω, t)

���� ��
Zout
th

�� �ÿ���������� �ÿ
D

C

(b)

Figure 3.2: Circuit (a) shows the equivalent looking into the input side of a black-box circuit. This is
characterized by some input impedance, Zin

th . Circuit (b) shows the equivalent looking into the output side
of a black-box circuit. This is characterized by a Thèvenin voltage, vth, and an output impedance, Zout

th .

tanφ = a. However, this may be ambiguous as to what φ we mean: tanφ = tan (φ± π) = a. Figure 3.3
shows two pairs of points, where the points in each pair have the same value of the tangent function.
Unfortunately, in electronics we need to know which of the two possible values of φ we really want. In
order to try to alleviate this in the text, we are going to write the expression for these phase angles as
tanφ = y/x. In Figure 3.3, we would write the four expressions:

tan (φ1) = b/a

tan (φ1 + π) = −b/− a

tan (φ2) = −d/c
tan (φ2 + π) = d/− c .

The ratio will be the value on the y-axis (with sign) over that along the x-axis (with sign). This notation
uniquely identifies φ in the range of 0 to 2π.

(a,b)

(−a,−b)

(c,−d)

(−c,d)
φ

φ +π

φ +π
1

1 2

2

φ

Figure 3.3: The ambiguity in tan (φ).
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3.2 The Low-pass Filter

A low-pass filter is a circuit that lets through low-frequency signals essentially without loss, but strongly
damps out high-frequency signals. Figure 3.4 shows the low-pass filter configuration of an RC circuit.
The values of R and C will allow us to characterize the circuit very simply. The gain, or more accurately
G · vi, tells us the open-circuit output voltage, or Thèvenin equivalent source voltage.

/vi(ω)

��� �ò ð� ��
R

�� �ÿ�� �òA��� �ò ð������� �ÿ�� �òB���� C���ý vo(ω)

(a) (b)

Figure 3.4: A low-pass RC filter circuit, (b), that can be connected to some AC voltage source, (a).

3.2.1 The Gain of the Low-pass Filter

The analysis of the voltage gain is conceptually straightforward. The circuit in Figure 3.4 is just
a generalization of the voltage divider discussed earlier. As long as nothing is connected across the
output, the same current flows through R and C. This current is just vi/(ZR +ZC), which means that
the voltage across the capacitor is just ZC times the current.

vo(ω) = vi(ω)
ZC

ZR + ZC

vo(ω) = vi(ω)

1
jωC

R+ 1
jωC

At this point, we note that the product ωRC is dimensionless. We can rewrite this as follows, which
gives the gain for a low-pass filter as in equation 3.2.

vo(ω) = vi(ω)

[

1

1 + jωRC

]

Glp(ω) =
1

1 + jωRC
(3.2)

The characteristic time τ = RC appears explicitly in these equations. However, in the frequency domain,
we refer to a characteristic frequency, ωRC , as

ωRC =
1

RC
.

We can now rewrite equation 3.2 in terms of ωRC in such a way that it is explicitly dimensionless. This
is usually a good practice as it makes it very easy to see that an equation is dimensionally correct. It
also makes it quite clear that the behavior of the function depends on the relative sizes of the frequency
and the characteristic frequency.

Glp(ω) =
1

1 + j · (ω/ωRC)
(3.3)
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To see the asymptotic behavior of equation 3.3, we take the limits ω << ωRC and ω >> ωRC . The
region ω ∼ ωRC is the cross-over region between asymptotic behaviors. It is worth noting that (RC)−1,
with units s−1, is to be compared to ω and not to f = ω/(2π). This conclusion comes out of the above
analysis. You might want to think of radians as being more natural or physical units than the simple
counting of cycles.

Before doing more analysis, let’s look at the circuit and make sure we can intuitively obtain the
asymptotic behaviors. At low frequencies, |ZC | is large compared to R. Hence, most of the input
voltage will appear across the capacitor. This will yield that |Glp| → 1 and the phase shift φ → 0. At
high frequencies, |ZC | becomes small compared to R. In this case, most of the voltage will appear across
the resistor and we will find that |Glp| → 0. Since the current will be determined by R (and therefore
will be in-phase with the input voltage), φlp → −π/2 because of the −j in ZC . The circuit will “pass”
low frequencies (from input to output) but will attenuate high frequencies.

Now we obtain analytic verification of the intuitive trends just described. It is a useful exercise to
verify the algebra leading from equation 3.2 to the following two expressions.

|Glp(ω)| =

[

1

1 + (ω/ωRC)2

]1/2

(3.4)

tan (φlp(ω)) =
−ω/ωRC

1
. (3.5)

We have written equation 3.5 explicitly as the imaginary part of the gain divided by the real part of
the gain; thus the 1 in the denominator. This shows that φlp lies in the fourth quadrant of the complex
plane since the imaginary part of Glp is negative and the real part is positive.

In the limit ω << ωRC , equation 3.4 goes to one and equation 3.5 goes to zero—as expected. The
circuit reproduces the input at its output terminals. The magnitude of the gain becomes constant—this
is a power law with α = 0,

20 dB logG = constant

G ∼ f0

which is a horizontal line on the Bode plot shown in Figure 3.5. On the linear phase angle scale, this
quantity also becomes constant with a value of zero. In the limit ω >> ωRC , equation 3.4 becomes
ωRC/ω, which is much smaller than 1. The phase in equation 3.5 becomes the inverse tangent of a large
negative number—the phase angle goes to −π

2 . While the phase angle plot becomes constant, the Bode
plot follows another straight line, this time with a slope of −20 dB/decade. This is a power law with
α = −1,

G ∼ f−1.

Notice that the overall Bode plot is simple. It is two straight lines connected by a curved piece in
the neighborhood of ω = ωRC . At this characteristic frequency, ωRC , the magnitude of the gain is
1/
√

2 ≈ 0.707; the base-10 log of this is -0.1505, so this point is below the 0 dB level (gain of one) by
just about 3 dB. The so-called −3 dB point. At the same frequency, the phase is −π

4 , or −45◦ as shown
in Figure 3.5.

3.2.2 The Output Impedance of the Low-pass Filter

To compute the impedance seen from the output terminals, we assume that the source can be modeled
as an ideal source in series with a resistance, rs. This is shown in Figure 3.6. If the source impedance
were complex rather than just a real resistance (rs), then the input signal to the filter could contain
distortions of the original source signal (frequency dependent amplitudes and phases). However, even
just a resistance, rs, can affect the nature of the output. We will see this again.
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Figure 3.5: Frequency response of the low-pass filter. (a) shows the Bode plot for the response in decibels
while (b) shows the phase shift in units of degrees. The frequency axis is scaled by ωRC = (RC)−1; by
re-scaling this axis, these curves describe any RC low-pass filter.

By comparing the short-circuit current to the open-circuit voltage, the Thèvenin equivalent impedance
can be found just as we did for the resistive voltage divider. The Thèvenin, or output, impedance as
seen across the A and B terminals in Figure 3.6 is just ZC in parallel with (R+ rs).

Zout =
(R+ rs) ·

(

1
jωC

)

(R+ rs) +
(

1
jωC

)

Zout =
(R+ rs)

1 + jω (R+ rs)C
(3.6)

The Thèvenin equivalent circuit for the output terminals is just a voltage source of amplitude |vi(ω) ·Glp(ω)|
and phase angle given by equation 3.5, in which R has been replaced by R + rs. This is connected in
series with the impedance given in 3.6. At low frequencies the capacitor’s impedance becomes large and
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/vi(ω)
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(a) (b)

Figure 3.6: A low-pass circuit, (b), and a source, (a). The source includes some internal source resistance,
rs.

Zout → (R+ rs), whereas at high frequencies, Zout → 1/(jωC) (the capacitor impedance dominates the
parallel combination). |Zout| is a maximum at low frequencies and decreases as ω increases. We can
rewrite this slightly to emphasize the fact that if rs is small relative to R, then it has little effect on the
output impedance of the filter.

Zout = R
(

1 +
rs
R

)

· 1

1 + j (ω/ωRC) · (1 + rs/R)
(3.7)

3.2.3 The Input Impedance of the Low-pass Filter

From the input terminals, the filter (with no load connected) looks like a series combination of R and
C:

Zin = R+
1

jωC

Zin = R
(

1 − j
ωRC

ω

)

.

For frequencies much larger than ωRC , |Zin| → R and becomes larger as the frequency decreases. The
Thèvenin equivalent circuit for the input terminals is just Zin.

Note however, that when we put a load, ZL, on the output, the input impedance changes: we have
the parallel combination of C and ZL in series with R. This is a serious drawback of the simple passive
filter circuits we are considering here—it is a drawback that we will overcome later in the course by
using transistors and/or operational amplifiers.

3.3 The High-pass Filter

A high-pass filter is a circuit that lets through high-frequency signals essentially without loss, but
strongly attenuates low-frequency signals. Figure 3.7 shows the high-pass filter configuration of an RC
circuit.

3.3.1 The Gain of the High-pass Filter

Again taking advantage of our understanding of a voltage divider, we can determine the voltage gain of
the high-pass filter as follows:

vo(ω) = vi(ω)
ZR

ZR + ZC

vo(ω) = vi(ω)
R

R+ 1
jωC
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Figure 3.7: A high-pass RC filter circuit (right) connected to some input voltage source, (left).

vo(ω) = vi(ω)

[

jωRC

1 + jωRC

]

or

Ghp(ω) =
j (ω/ωRC)

1 + j (ω/ωRC)
(3.8)

As before, we have arranged this expression so that all terms are dimensionless and taken advantage of
the characteristic frequency, ωRC = (RC)−1. The magnitude and phase of the gain are then:

|Ghp(ω)| =
ω/ωRC

[1 + (ω/ωRC)2]1/2
(3.9)

tan (φhp(ω)) =
1

ω/ωRC
(3.10)

Figure 3.8(a) shows a Bode plot and (b) shows a phase versus log(f) for these. It is easy to show that
equations 3.9 and 3.10 lead to the following asymptotic behaviors. For ω << ωRC ,

|Ghp| → ω/ωRC << 1

φhp → π

2
.

For the limit where ω >> ωRC ,

|Ghp| → 1

φhp → 0

3.3.2 Input and Output Impedance

Figure 3.9 shows a high-pass filter connected to a voltage source with an internal resistance rs. Looking
at this as a voltage divider like we did for the low-pass filter, the output impedance can be calculated
as:

Zout = (Zs + ZC) || ZR

Zout =

(

rs + 1
jωC

)

·R
(

rs + 1
jωC

)

+R

Zout = R · (rs/R) − j (ωRC/ω)

(1 + rs/R) − j (ωRC/ω)
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Figure 3.8: Frequency response of the high-pass filter. (a) shows the magnitude response in decibels while
(b) shows the phase shift in units of degrees. The frequency axis is scaled by ωRC = (RC)−1; by re-scaling
this axis, these curves describe any RC high-pass filter.

Zout = R · 1 + j (ω/ωRC) (rs/R)

1 + j (ω/ωRC) · (1 + rs/R)
. (3.11)

Again, (3.8) and (3.11) specify the Thèvenin equivalent circuit for the output terminals. Note that in
the limit of rs << R, equation 3.11 and equation 3.7 become the same.

Under no-load conditions, the input impedance is just the same as the low-pass filter. (See sec-
tion 3.2.3).
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Figure 3.9: A high-pass RC filter circuit (b) connected to some voltage source with internal resistance rs,
(a).

3.4 Integrating and Differentiating Circuits

If we examine the output of either the high-pass or the low-pass filter, there are two regions defined
by the high- and low-frequency limits: ω >> ωRC and ω << ωRC . In one of these limits, the output
voltage and the input voltage are nearly the same. In the other limit, the magnitude of the gain falls off
with the frequency, and the magnitude of the phase goes to π

2 . Let us look more carefully at this latter
limit for the two filters. These are summarized in Table 3.1. If we now take a specific input voltage,

Filter Limit Gain Phase
Low-pass ω >> ωRC ∼ ω−1 −π

2
High-pass ω << ωRC ∼ ω1 π

2

Table 3.1: Limits of the low-pass and high-pass filter.

vi = va cos (ωt), then the output for the two filters will be as in equation 3.12 for the low-pass filter and
as in equation 3.13 for the high-pass filter.

vo ∼ 1

ω
cos
(

ωt− π

2

)

vo ∼ 1

ω
sin (ωt) (3.12)

vo ∼
∫

vidt

vo ∼ ω cos
(

ωt+
π

2

)

vo ∼ −ω sin (ωt) (3.13)

vo ∼ dvi

dt

The two RC filters that we have looked at appear to behave as integrating and differentiating
circuits. Lets us now be a bit more explicit. We consider an input voltage written in complex form as
in equation 3.14. Recall that when we measure this, we are taking the real part of the equation.

vi(t) = vae
j(ωt+φa) (3.14)

If we now take the gain for a low-pass filter from equation 3.2, we can calculate the output voltage of
our filter as:

vo(t) = Glp(ω) · vi(t)

vo(t) =
1

1 + jω/ωRC
· vae

jωt+φa
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Now let us consider the limit in which ω >> ωRC . We can approximate the previous equation as:

vo(t) =
1

jω/ωRC
· vae

j(ωt+φa)

vo(t) =
ωRC

jω
· vae

j(ωt+φa)

vo(t) = ωRC ·
∫

vae
j(ωt+φa)dt

vo(t) = ωRC ·
∫

vi(t)dt (3.15)

In the high-frequency limit, the output of the low-pass filter is the characteristic frequency times the
integral of the input voltage.

A similar analysis can be carried out for the high-pass filter. We find that

vo(t) =
1

ωRC
· dvi(t)

dt
(3.16)

We can now extend this to any periodic function by expanding the function as its Fourier series. If
we represent an input signal in terms of a Fourier sum as

v(t) =
∞
∑

n=0

an cos (nωot+ φn) ,

it is easy to take a derivative or integral of an arbitrarily complicated waveform. For the derivative, we
have:

v̇i(t) =
∞
∑

n=0

an(−nωo) sin(nωot+ δn)

v̇i(t) =

∞
∑

n=0

an(−ωn) cos(ωnt+ δn + π/2)

v̇i(t) =

∞
∑

n=0

anRe
[

(jωn)ej(ωnt+δn)
]

,

where ωn = nωo. Thus, in the formula for the derivative, the frequency component at ωn has just been
multiplied by factor of jωn. Inserting this factor is the same as taking the derivative!

If we have a circuit whose gain is G(ω) = jω/ωc (ωc being some characteristic frequency—(RC)−1

in our case), over the range of frequencies in the input signal’s Fourier representation, then the output
will be proportional to the derivative. The high-pass filter performs exactly this function in the region
ω << ωc.

A similar calculation leads to the conclusion that a gain function which scales with 1/(jω) leads to
an output proportional to the integral of the input. The low-pass filter performs exactly this function
in the region ω >> ωRC .

Notice that in neither case can we build a circuit which will perform the appropriate operation on
an arbitrary input signal. Eventually, the gain becomes constant as seen in Figs. 3.5 and 3.8. These
mathematical functions work in the frequency region where the gain is small. This means that, with
these circuits, the relevant signal may also be small and therefore subject to noise and measurement
difficulties. We will be able to make better circuits when we include some amplification. On the other
hand, the eventual saturation of the gain at some finite level will always be a limitation—we can’t make
circuits with infinite gain!
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3.5 RLC Circuit Analysis

So-called RLC circuits play a large role in the modern world. An important use is in receivers where they
select out a particular frequency, the resonant frequency of the circuit. This frequency is characterized
by the inductance, L, and capacitance, C, of the circuit and is given as 1/

√
LC. From earlier, we know

that three characteristic frequencies can actually be defined for a circuit with R, L and C. We already
have the LC, or resonant, frequency from above. The other two are the RC and the RL frequencies.
We can define these three frequencies as follows.

ωLC ≡ 1√
LC

ωRC ≡ 1

RC

ωRL ≡ R

L

In this section, we will examine the response of various RLC circuits in terms of these three frequencies.
In all cases, the resonant frequency is the crucial one in defining behavior. Choosing this frequency
defines a relationship between L and C. We will see that the free parameter that controls the other
two frequencies is the resistance of the circuit. In the time domain, the resistance controls how quickly
a signal is damped out. In the frequency domain, we will see that the resistance controls how narrow
the resonance is (around the resonant frequency). The smaller R is, the sharper the resonance and the
bigger the gain. The limit of very small R for the two frequencies that depend on R is:

ωRC → ∞
ωRL → 0.

3.5.1 The series RLC circuit.

Let us consider the series RLC circuit as shown in Figure 3.10. In such a circuit, we can nominally
consider several possible output voltages. We see three of them in the figure. These are just the
voltages across the three components in the circuit: vR

o across the resistor, vL
o across the inductor and

vC
o across the capacitor. Unfortunately, as discussed earlier, the resistor and the inductor are probably

not separable. All inductors have a non-zero internal resistance. If we want to restrict ourselves to
output voltages that we can measure, we are limited to vC

o and vLR
o . The latter is the voltage measured

across the resistor and inductor, where we have assumed that the only resistance in the circuit is that
of the inductor.

In analyzing the circuit, we can start by writing the total impedance seen by the source. This is just
the series combination of the impedances of the three elements in the circuit.

Ztot = R+ jωL+
1

jωC

Ztot = R

[

1 − j
ωRC

ω

(

1 − ω2

ω2
LC

)]

, (3.17)

where ωLC and ωRC are defined above. When the frequency is equal to the resonant frequency, ω = ωLC ,
the imaginary part of Ztot is zero and the magnitude of Ztot is minimized: | Ztot |= R. In addition, the
current in the loop is in-phase with the source voltage.

We can now write the three output voltages in Figure 3.10 using the voltage divider formula. The
voltage across any one of the elements, X, is

vX
o (ω) =

ZX

Ztot
· vi(ω).
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Figure 3.10: The series RLC circuit.

We can also write this as a gain across the specified component.

GX(ω) =
ZX

Ztot
(3.18)

The component gain we can actually measure is that across the capacitor. In this case, we can write:

GC(ω) =
ZC

Ztot

GC(ω) =
1

(1 − ω2/ω2
LC) + j (ω/ωRC)

. (3.19)

From this, we can determine the magnitude and the phase of the capacitor gain.

| GC(ω) | =

[

1

(1 − ω2/ω2
LC)

2
+ (ω/ωRC)

2

]1/2

tan (φC(ω)) =
−ω/ωRC

1 − ω2/ω2
LC

(3.20)

This suggests several limits we want to examine. First let us consider the case when the circuit is at
the resonant frequency, ω = ωLC . In this particular limit, we have that:

| GC | =
ωRC

ωLC
=
ωRL

ωRC
=

√

L

R2C

φC = −π
2

As R→ 0, we see that | G |→ ∞. In the low-frequency limit, ω → 0, we have that

| GC | → 1

φC → 0(−) ,

where we have written 0(−) to indicate that the phase approaches 0 from the negative side. Finally, we
can consider the high-frequency limit, ω → ∞.

| GC | →
(ωLC

ω

)2

φC → −π
2
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Figure 3.11: The Bode (a) and phase plot(b) for the gain measured across the capacitor in the series RLC
circuit. The four curves are for progressively larger ωRC , corresponding to progressively smaller R. We see
that the resonance becomes sharper and the peak gain larger as R decreases.

Figure 3.11 shows the Bode and phase plot for the gain across the capacitor. In the Bode plot, note that
the peak around the resonant frequency, ωLC , gets sharper as ωRC increases, or as mentioned earlier,
as R decreases. If R becomes large enough, the resonance response vanishes.

In interpreting the tangent in equation 3.20, it is important to note the minus sign in the numerator.
The denominator changes sign as we go through ωLC , while the numerator remains negative. The gain
moves from the fourth quadrant to the third quadrant of the complex plane as the frequency sweeps
through the resonance.
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We can now look at the gain across the resistor:

GR(ω) =
R

Ztot

GR(ω) =
1

1 − j (ωRC/ω) (1 − ω2/ω2
LC)

. (3.21)

From this, we can write the magnitude and phase of the gain across the resistor as

| GR(ω) | =
ω/ωRC

[

(ω/ωRC)
2
+
(

1 − ω2/ω2
LC )2]

1/2

and

tan [φR(ω)] =

[

ωRC

ω

(

1 − ω2

ω2
LC

)]

/1. (3.22)

In equation 3.22, the phase angle is positive when ω < ωLC and then changes sign at ω = ωLC . As with
the capacitor, we can consider several frequency limits for the gain and phase. We start with ω = ωLC .

GR(ω) = 1

φR = 0

We can now examine the low-frequency limit, ω ≪ ωLC .

GR(ω) → ω/ωRC
[

1 + (ω/ωRC)
2
]1/2

GR(ω) → ω/ωRC → 0

tan (φR) → ωRC/ω

1

φR → π

2

The last limit is ω ≫ ωLC .

GR(ω) → ω/ωRC

ω2/ω2
LC

Noting that ωRC/ω
2
LC = ωRL, we can write

GR(ω) → ωRL

ω
→ 0 .

For the phase we have

φR → tan−1

(−ωRCω

ω2
LC

)

φR → −π
2

Figure 3.12 shows the Bode and phase plots for the gain across the resistor. As with the capacitor, the
resonance curve becomes sharper as R becomes smaller, but the maximum gain remains 1 for all values
of R.
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Figure 3.12: The Bode (a) and phase plot (b) for the gain measured across the resistor in the series RLC
circuit. The four curves are for progressively larger ωRC correspond to progressively smaller Rs. We see that
the resonance gets sharper as R is decreased.

Finally, let us look at the gain across the inductor. While it is true that any real inductor will have
some internal resistance associated with it, we can mathematically treat the case of a pure inductor.
Under this assumption, we find:

GL(ω) =
jωL

R− j 1
ωC (1 − ω2/ω2

LC)

GL(ω) =
1

(1 − ω2
o/ω

2) − j (ωRL/ω)
(3.23)
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From this, we can get the magnitude and phase of the gain to be:

| GL(ω) | =

[

1

(1 − ω2
LC/ω

2)
2

+ (ωRL/ω)
2

]1/2

and

tan [φL(ω)] =
ωRL/ω

1 − ω2
LC/ω

2
.

We can now examine the usual limits. The first is ω = ωLC , where we find that:

| GL(ωLC) | =
ωLC

ωRL

| GL(ωLC) | =

√

L

R2C

φL =
π

2
.

In the limit when ω ≫ ωLC , we find

| GL | → 1

φL → 0 .

Finally, in the limit where ω ≪ ωLC ,

| GL | →
(

ω

ωLC

)2

tan (φL) → ωωLR

−ω2
LC

φL → −π

In Figure 3.13(a) we plot the gain and in (b) the phase as a function of log (f). We see that as R
decreases, the resonance becomes sharper, and the gain at resonance increases.

Note that, while the gain of the circuit across individual elements may be larger than one, the sum of
voltages across the three elements adds to the supply voltage, as it should. For example, at the resonant
frequency,

vR(t) = Vs cos(ωot)

vC(t) = Vs

√

L/C

R
cos(ωot− π/2),

and

vL(t) = Vs

√

L/C

R
cos(ωot+ π/2).

Due to the phase shifts between vC and vL, these two sum to zero and the sum of voltages has the same
amplitude and phase as the source.

3.5.2 The LC-parallel RLC circuit.

Here, we have the parallel combination of L and C in series with R as shown in Figure 3.14. In this
case, we can write the equivalent impedance of the circuit as ZR in series with ZL || ZC . The equivalent
impedance of LC is

ZLC =
jωL

1 − ω2/ω2
LC

.
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Figure 3.13: The Bode (a) and phase plot(b) for the gain measured across the inductor in the series RLC
circuit. The four curves for progressively larger ωRC correspond to progressively smaller R. We see that the
resonance becomes sharper and the peak gain increases as R is decreased.

Using this, we write that the gain across the LC parallel combination is:

GLC(ω) =
ZLC

R+ ZLC

GLC(ω) =
1

1 − j (ωRL/ω) (1 − ω2/ω2
LC)

. (3.24)

Thus,

| GLC(ω) | =
[

1 + (ωRL/ω)
2 (

1 − ω2/ω2
LC

)2
]−1/2
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Figure 3.14: The LC-parallel RLC circuit.

and

tan (φLC(ω)) = (ωRL/ω) (1 − ω2/ω2
LC).

Finally, we can look at the limits. When ω = ωLC , we have:

| GLC | = 1

φLC = 0

As we take ω ≪ ωLC , we find that:

GLC(ω) → ω/ωLR

φLC → π

2
.

In the limit where ω ≫ ωLC , we have:

| GLC | → ωRC/ω,

φLC → −π
2
.

3.6 Driving Loads with Filters

If we build a high-pass or low-pass filter, we typically want to use the filtered output as input into some
additional circuit. We can model this new circuit as a load impedance, ZLD, connected between the
output terminals of the filter. Figure 3.16 shows a low-pass filter driving such an impedance.

Because a filter can be considered a voltage divider, we can use its Thèvenin equivalent impedance
to study the circuit’s behavior when it is loaded. Recall that the Thèvenin equivalent impedance of a
voltage divider is just the parallel combination of the two impedances in the divider. This will be the
same for both high-pass and the low-pass filters, namely, Zout is the parallel combination of ZR and ZC .

Zout = ZC || ZR

Zout =
ZCZR

ZC + ZR

Zout =
R

1 + jω/ωRC
. (3.25)

In order for the circuit not to be loaded down by ZLD, we recall that ZLD ≫ Zth, or in comparing to
equation 3.25, we get the relation in equation 3.26 for the magnitude of the two impedances.

| ZLD | ≫ R
√

1 + (ω/ωRC)
2

(3.26)
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Figure 3.15: The Bode (a) and phase plot (b) for the gain across the parallel LC combination shown in
Figure 3.10. -vi(ω)
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Figure 3.16: A low-pass filter driving a load impedance, ZLD.
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If we examine equation 3.26 in the case where ω = ωRC , then we get that | ZLD |≫ R/
√

2. Generally,
we are operating in the limit of either ω ≪ ωRC (low-pass) or ω ≫ ωRC (high-pass). In the low-pass
case, if ω ≪ ωRC , then the denominator of equation 3.26 becomes 1, and we get

| ZLD | ≫ R .

In the case of the high-pass filter, we look at the opposite limit. Here, the denominator of equation 3.26
becomes ω/ωRC . Since ωRC = 1/RC, we see that the limit for ZLD is

| ZLD | ≫ 1

ωC
(high − pass)

We would like to use this to come up with the smallest load we can drive with this filter. In order to
do this, we need to make some assumption about the frequency, ω. For the circuit to function as a
high-pass filter, the natural choice is ω = ωRC . With this, we can deduce that the load must satisfy

| ZLD | ≫ R/
√

2

an equation that can safely be applied for both the low-pass and the high-pass filters.

Example: We want to design a low-pass filter with a characteristic frequency of f = 1590Hz which
can drive a load of | ZLD |> 10 kΩ. We are also told that the voltage supply that is used to drive the
filter has an output resistance of Rs = 50Ω. What are good values of R and C to choose for this circuit?

First recall that for the low-pass filter, the total resistance is R+ rs (see equation 3.6). If start with
our limit on the load impedance, we would like to choose | ZLD |≫ (R+ rs)/

√
2. We can rearrange this

to get R + rs ≪ 14.1 kΩ. We now need to decide how we want to treat the much less. If possible, a
factor of 10 is a good choice. However, in some cases, we may be forced to choose a smaller number.
Any choice that we make is going to have some consequence for the circuit. If we take a factor of 10,
then we get that R + rs ≈ 1.4 kΩ and R ≈ 1.35 kΩ. We now want to choose C such that 1/RC will be
ωRC . This gives us

1

(1350Ω)C
= 2π1590Hz

C =
1

1350Ω
· 1

10000 s−1

R = 1.35kΩ

C = 74.nF

3.7 Chaining Filters Together

Let us now continue to look at what happens when we try to connect sub-circuits together to perform
a more complex function. We will use the filter circuits as an example, but the results will all turn out
to hinge on Thèvenin equivalents, so the conclusions are general. These considerations are important
when one wants to design circuits or sub-circuits to perform tasks in the lab.

3.7.1 The Band-pass Filter

Suppose we want to extract from our input signal the part that is located close to the characteristic
frequency, ωRC , while rejecting other frequency components. Based on what we have done so far, the
natural thing to try is to hook a low-pass filter to a high-pass filter. Let us use the circuit shown
Figure 3.17 and analyze the behavior of the combined circuits. In order to optimize the behavior, we
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Figure 3.17: Connecting a low-pass filter to a high-pass filter to achieve a band-pass filter. We use the
Thèvenin equivalent circuit for the source on the left. The next stage is the high-pass filter whose output is
labeled va. This output is connected to the low-pass filter which, in turn, will be connected to some other
circuitry represented by the complex load ZLD. The voltage at the output of the low-pass filter is vo(ω).

want for both filters to have the same characteristic frequency, ωc. This gives that R1C1 = R2C2. A
key element of this analysis will be using the Thèvenin equivalents of the various circuit elements. In
this regard, the input and output impedances of the two filters are helpful.

To start, we would like to write that the voltage va at the point after the high-pass filter (the input
to the low-pass filter) is:

va(ω) = Ghp(ω)vi(ω).

This is true under the condition that the effective load, Zeff , is large compared to the output impedance
of the low-pass filter, and, in turn, the input impedance of the low-pass filter is large compared to the
output impedance of the high-pass filter. If we choose components such that this is true, then we can
write that the voltage at the output of the low-pass filter will be:

vo(ω) = Glp(ω)va(ω)

vo(ω) = Glp(ω)Ghp(ω)vi(ω). (3.27)

If we now have the condition that ZLD is large relative to the output impedance of the low-pass filter,
then we may be able to achieve our goal of passing a limited frequency range. To summarize, we need
to satisfy the following four conditions.

1. R1C1 = R2C2

2. | Zhp
in |≫ rs

3. | Zlp
in |≫| Zhp

out |

4. | ZLD |≫| Zlp
out |

Figure 3.18 shows the Bode plot and phase plot for the combined filter when the above conditions are
satisfied. Figure 3.19 shows the gain plotted against log (f) on a linear scale.

We might note a few points about this combined filter. The maximum value of the gain is 1
2 which

occurs at the characteristic frequency, ωRC . This comes from the fact that both the high-pass and the
low-pass filters have a gain of 1√

2
at ωRC . Second, the phase is zero at ωc, but for lower frequencies, it

increases towards π
2 , while for higher frequencies, it falls off towards −π

2 . Finally, this band-pass filter
lets through a range of frequencies. It essentially attenuates the gain at a rate of 20 dB/decade on either
side of ωRC .
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Figure 3.18: The Bode (a) and phase plot (b) of the desired response of the band-pass filter built from
a combination of high-pass and low-pass filters. In the linear regions, the gain falls at 20dB per decade of
frequency. The maximum value of the gain, at ω = ωRC , is 1

2 , while the phase at that point is 0◦.

Example: Let us now look at a specific example. We take ωRC = 2π(1000 s−1), (f = 1 kHz). This
means that we need R1C1 = R2C2 = 1.6 × 10−4 s. Furthermore, we assume that the input source
resistance is rs = 50Ω. The logic for determining actual values of the resistors and capacitors is as
follows.

Since we want all of vi to appear at the input to the high-pass filter, we want rs ≪| Zhp
in |. The input

impedance of the filter is just ZR in series with ZC . This gives us that:

rs ≪ | R1

(

1 +
1

jωR1C1

)

|
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Figure 3.19: The same curves as in Figure 3.18, but with a linear vertical axis. This may improve your
intuitive understanding of what is shown in the Bode plot (as well as in other Bode plots).

rs ≪ R1

√

(

1 +
1

(ω/ωc)2

)

Evaluating this at ω = ωRC , we find that:

R1 ≫
√

2 · rs
R1 ≫ 71Ω

Choosing R1 = 100 · rs = 5 kΩ should be quite safe. Having determined R1, we can now calculate C1

using the relation that R1C1 = 1/ωRC . This gives us

(5 kΩ) · (C1) =
1

6280 s−1

C1 =
1

5 kΩ
· 1

6280 s−1

So that C1 ≈ 0.03µF . These values

R1 = 5 kΩ

C1 = 0.03µF ,

are convenient laboratory values.
We now have va = Ghpvi, but this is only true as long as there is no load on the high pass filter

stage. In other words, this is the open-circuit output voltage of the first stage.
To see what happens when we attach the low-pass circuit to the high-pass stage, we need the Thèvenin

equivalent circuits for the output of the high-pass input of the low-pass, as shown in Figure 3.20.
Again, we have a voltage divider in which we want all of va to appear across Zlp

in. Therefore, we want

| Zhp
out |≪| Zlp

in |. The output impedance of the high-pass filter is just the parallel combination of ZR1

and ZC1
, while the input impedance of the low-pass filter is the series combination of ZR2

and ZC2
.
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Figure 3.20: The equivalent circuits for the output of the high-pass and input to the low-pass filter. va is
the open-circuit output of the high-pass stage. This stage has output impedance Zhp

out. When the low-pass

stage is connected, we are putting a load, Zlp
in on the high-pass stage and, in general, the voltage at the

input, vhp
o , is no longer va.

Thus

| R1

1 + jωR1C1
| ≪ | R2

(

1 +
1

jωR2C2

)

|

| R1

1 + jω/ωRC
| ≪ | R2

(

1 − j
ωRC

ω

)

|

R1 ≪ R2 |
(

1 + j
ω

ωRC

)

(

1 − j
ωRC

ω

)

|

If we take ω = ωRC , then the previous equation simplifies to R1 ≪ R2 ·2. To satisfy this, we will choose
R2 = 100 · R1. Finally, by setting the characteristic frequency, we get the following values for R2 and
C2.

R2 = 500 kΩ

C2 = 0.3nF.

The circuit design is complete but we now we need to think about how well it will work. In particular,
we have not yet looked at the load impedance, ZLD. In order for the circuit to work as desired,
we require that the load impedance is much larger than the output impedance of the low-pass filter:
| ZLD |≫| Zlp

out |. As we have seen, this means that | ZLD |≫ R2.
The value of R2 = 500 kΩ is uncomfortably large. Not only does the load we are driving have to

have a very large input impedance, but with very large resistances, you have to worry about conduction
through moisture, dust, and dirt. Furthermore, C2 is uncomfortably small. Stray capacitance start to
become important. If we had settled on a smaller factor than the 100 we used above, we would have
had more comfortable component values, but we would have compromised signal quality. This kind of
trade-off is found in essentially all circuit designs.

At the frequency we want to pass through the filter, ω = ωRC , the gain is just −3 dB−3 dB = −6 dB
or G = 0.5. Unless the input signal is quite large, this could cause trouble—we’d like a circuit with an
amplified output voltage rather than an attenuated one.

Finally, Zin is dominated by the first stage (high-pass) and is reasonably large. However, if the input
voltage were coming from a device with higher output impedance, we would quickly get into trouble
with very large resistance values. It would be advantageous to have an isolation stage between the
source voltage and our circuit. Such a device would have a gain of 1, a very large input impedance and
a very small output impedance.

Example: Let us consider a slightly modified case for the band-pass filter shown in Figure 3.17. We
will assume that both stages of the filter have the same characteristic frequency, ωRC , and that the
high-pass stage has R1 = R and C1 = C. The low-pass stage will be assumed to have R2 = αR and
C2 = 1

αC. We will now look at the behavior of the circuit at ω = ωRC = 1
RC . At the characteristic
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frequency, we find that ZC1
= −jR and that ZC2

= −jαR. Using Kirchhoff’s rules, or some other
technique, we can find an exact expression for the gain of the two stages:

Ghplp(ωRC) =
α

2α+ 1
.

Table 3.2 gives the gains for several values of α. When the low-pass stage has a large impedance, the
circuit behaves as desired. If we reverse the order of the impedances, the gain will be dramatically
reduced.

α 100 10 1 0.1 0.01
Glphp 0.498 0.476 0.333 0.083 0.010

Table 3.2: The gain of the band-pass filter at ωRC for several values of α, the ratio of R2 to R1.

We conclude that it is possible to connect circuit stages together to perform complex functions but
that we have to be careful in such a design. The fundamental rule is that we want low output impedances
connected to high input impedances. If we can arrange this and still have the circuit function, then we
should sh the results we want.

As this example has shown, it’s not easy to meet these requirements with the circuits we’ve studied
so far. We will shortly develop an impedance transformer circuit in the form of a single transistor and
also in the form of an integrated circuit called an operational amplifier. We will build amplifier circuits
(transistor based and op-amp based) to boost signal amplitudes. And we will build filter circuits which
have gain (that is, have |G| > 1).

3.8 Building Better Filters

In the last section, we examined chaining together a high-pass and a low-pass filter to achieve a simple
band-pass filter. In doing so, we arrived at several impedance relations that would allow us to assume
that the later stages of the filter did not load down the stages prior to them. We would no like to look at
the effect of connecting several low-pass (or, equally, high-pass) filters together to achieve a sharper edge
in the frequency fall-off. For simplicity, we will assume that we have managed to build the circuit shown
in Figure 3.21, where the characteristic frequency of each stage is the same, ωRC , and the component
values are chosen such that the stages do not load each other down. Let us now examine the behavior
of this circuit. ð�� ��

R1

�� �ÿ����C1 ���ÿ�������� �ðvi(ω)

�� ��
R2

�� �ÿ����C2 ���ÿ�������� �xyyy z�� ��Rn

�� �ÿ����Cn ���ÿ�������� �xyyy z �� �ò�� �òvo(ω)

Figure 3.21: Connecting n low pass filters together to achieve a better filter.

We can start with the gain of the circuit. For a single low-pass filter, the gain is as given in
equation 3.3. Additional stages will each have the same factor. This would give us that the gain of an
n-stage filter is

G(ω) =
1

(1 + jω/ωRC)
n . (3.28)

We can get the magnitude of this gain by noting that every filter stage contributes a factor of

1
√

1 + (ω/ωRC)2
,
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which gives that the magnitude of the gain of such a filter is

| G(ω) | =
[

1 + (ω/ωRC)2
]−n

2 . (3.29)

The Bode plots for several different values of n are shown in Figure 3.22. The gains are flat to a
frequency near the characteristic frequency, after which they fall off at a rate of n × 20 dB/decade. In
fact, at the characteristic frequency, it is easy to show that the curve is at the point n · −3 dB.
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Figure 3.22: The Bode plots of several different multi-stage low-pass filters as per equation 3.29. The
numbers next to the curves are the number of low-pass stages in the filter.

We can also compute the phase of the gain as a function of frequency. If the gain for n = 1 is

G(ω) = | G | ejφ ,

then that for n stages can be expressed as

G(ω) =
(

| G | ejφ
)n

.

This can be simplified to yield

G(ω) = | G |n ejnφ .

Using the phase for n = 1 given in equation 3.5, we can plot the phase for several values of n. This is
done in Figure 3.24 for up to n = 4.

Clearly, with multi-stage filters, we can make make the eventual slope of the frequency fall-off as
steep as we like, but as shown in both Figure 3.23 and in the phase plot, Figure 3.24, the knee of the
fall-off stays relatively smooth. We do not seem to be able to significantly sharpen this edge using only
low-pass filters. If we refer back to some of the RLC circuits, there we saw extremely fast phase motion
and an extremely sharp knee in some cases (e.g., Figure 3.11). The apparent conclusion here is that we
need inductors and capacitors together to produce sharp edges in our filters. We will investigate this
more carefully in the following section.
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Figure 3.23: The Bode plots of several different multi-stage low-pass filters as per equation 3.29. This plot
focuses on the knee in the frequency response. The numbers next to the curves indicate the number of
low-pass stages in the filter.
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Figure 3.24: The phase plots of several different multi-stage low pass filters. The numbers on the plot
indicate the number of low-pass filter stages, n.

3.9 Theoretical Considerations (Optional)

3.9.1 Complex Frequencies and Transfer Functions

Recall from section 2.7 that we could generate time dependencies for our voltages and current that were
oscillatory (sines and cosines) and exponentially increasing or decreasing in time. Equation 3.30 shows



94 CHAPTER 3. FILTERING CIRCUITS

how all of this behavior can be combined to describe, say, a voltage. In this equation, both σ and ω are
real numbers.

v(t) = V0e
(σ+jω)t (3.30)

The exponential decay or rise comes from the σt, while the oscillatory behavior comes from the jωt
term. We can represent all of the voltages with which we have been working in this form.

Continuing along this path, we can define a complex frequency, s, such that s = σ+ jω. This allows
us to use a single parameter, s, to describe not only currents and voltages, but also such quantities as
gain, G(ω).

In electronics theory, the gains we have studied are referred to as transfer functions. They can
be generalized to couple voltage or current on one side to either voltage or current on the other, and
generate a family of these functions. Note that gain is often referred to as H(jω) in electronics:

H(jω) = G(ω)

We will now generalize this to be a function of the complex frequency, s, so rather than H(jω), we have
H(s). The next thing that we will note is that the transfer function can be written as the ratio of two
polynomials, and these polynomials can be factorized as follows:

H(s) = A · (s− sa)(s− sb) · · · (s− sm)

(s− sα)(s− sβ) · · · (s− sµ)
(3.31)

Here, A is an overall scale factor while the sa,···,m are the zeroes of the numerator and the sα,···,µ are the
zeroes of the denominator. Because this equation arises from one in which all of the coefficients are real,
the roots of the polynomials must either be real or pairs of complex conjugates. This limits the cases
that we need to examine in detail. As far as the transfer function goes, the zeroes of the numerator are
zeroes of the transfer function, while the zeroes of the denominator cause the magnitude of the transfer
function to go to infinity. These are referred to as poles of the transfer function. Any transfer function
is fully described by its zeroes, its poles and the overall scale factor.

Example: Consider the low-pass filter with gain given in equation 3.3. Its transfer function can be
written as:

H(s) = ωRC
1

s+ ωRC
.

This transfer function has a single pole at s = −ωRC and a scale factor of ωRC .

Example: Similarly, the transfer function for the high-pass filter can be obtained from equation 3.8:

H(s) =
s

s+ ωRC
.

This transfer function has a zero at s = 0 and a pole at s = −ωRC .

3.9.2 Graphical Representation

The poles and zeroes of a transfer function can be represented as points on the complex s plane. This
is shown in Figure 3.25 for both the low-pass filter (a) and high-pass filter (b). We represent poles in
the complex plane as solid circles and zeros of the transfer function as open circles.

We can use the complex plane to determine the magnitude and phase of a transfer function. In order
to do this, let us consider the point on the negative real axis at (−a, 0) as shown in Figure 3.26. This
point can represent either a pole or a zero of a transfer function. To determine the magnitude an phase
of the transfer function at a frequency ω, we draw a line from the point to ω on the positive imaginary
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(b)

Figure 3.25: Representations of the low-pass (a) and high-pass (b) filters in the complex s-plane. Poles are
represented by solid circles, while zeroes are represented as open circles. Both of these filters have a pole on
the negative real axis at −ωRC , while the high pass filter also has a zero at s = 0.

σ

jω

(−a,0)

ω

φ

L

Figure 3.26: A graphical representation of the magnitude, L and angle, φ between two points in the complex
s plane.

axis as shown. The angle φ is given by tanφ = ω
a , while the length of the vector, L =

√
a2 + ω2. If we

had a zero of our transfer function at the point, then we have

G(jω) = A · L · ejφ
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whereas if the point is a pole of the transfer function, then

G(jω) = A
1

L · ejφ
.

If we have multiple poles and/or zeroes, then the total gain is just the product of the individual gains.
This yields that the total phase is just the sum of all the phases of the zeroes minus the sum of all the
pole phases, while the magnitude is the product of all the zero magnitudes divided by the product of
all the pole magnitudes.

A Zero or a Pole at The Origin

Let us now consider the case where we have a single zero or pole at the origin. From our graphical
representation, the angle from the origin to a point on the positive imaginary axis is always π

2 —the
phase angle a constant. Similarly, the length of the line is just ω. For a zero, we find that the gain is

G(ω) = ωej π
2

G(ω) = jω ,

while for a pole, it is

G(ω) =
1

ω
e−j π

2

G(ω) =
1

jω
.

These are plotted in Figure 3.27.

A Zero or a Pole on The Real Axis

If we have a single pole on the negative real axis at −a, then, from above, we have the following gains.
For a zero, we have

G(ω) =
√

a2 + ω2 etan
−1(ω/a)

G(ω) = a+ jω

while for a pole, we have

G(ω) = 1/
(

√

a2 + ω2
)

e− tan−1(ω/a)

G(ω) = 1/ (a+ jω) .

These are plotted in Figure 3.28.

A Pair of Complex Poles or Zeroes

The remaining case of interest occurs when we have inductors, resistors and capacitors in our circuit.
In such a case, the transfer functions factor to a pair of poles or zeros that are complex conjugates of
each other. For zeroes, the transfer function is

H(s) = (s− sa)(s− s∗a) ,

and for poles,

H(s) =
1

(s− sα)(s− s∗α)
.
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Figure 3.27: The Bode and phase plots for a zero (a),(c) and a pole (b),(d) at the origin.

Figure 3.29 shows s and s∗ in the complex plane, and two vectors going to a point on the imaginary
axis.

If s and s∗ are zeroes, then the magnitude is just the product of the two lengths, while the total
phase is the sum of the two angles. Note that at the point shown, the angle from the upper point is
negative. At the origin, the total phase would be 0◦, as the two phases are opposite each other.

If s and s∗ are poles, then the magnitude would be the inverse of the product of the amplitudes and
the phase would be the negative of the sum of the phases. Figure 3.30 shows the Bode and phase plots
for zeroes and poles, assuming that a is about 1% of ω0.

This discussion applies to a circuit containing inductance and capacitance. The resonant frequency,
ω0, is 1√

LC
, while the distance away from the imaginary axis, a, is related to the resistance in the circuit.

The smaller R is, the smaller a is, and the closer we are to having the two points on the imaginary axis.
In such a limit, the resonance peak would be infinitely high. Beyond the resonance peak, the curve is
increasing or decreasing by 40 dB per decade.

As we have previously seen, filters containing only resistors and capacitors will not have sharp cutoffs.
As the curves in Figure 3.30 show, the addition of inductors to our filters can give much sharper cutoffs
(assuming our resistances are small).
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Figure 3.28: The Bode and phase plots for a zero (a),(c) and a pole (b),(d) on the negative real axis.

3.9.3 Pole-Zero Cancellation

Some systems have poles where we do not want them. A method to remove these is so-called pole-zero
cancellation. We try to add a zero to the system at exactly the same place that we have an unwanted
pole. In equation 3.31, this then causes the pole and the zero to cancel each other out. The details are
beyond the scope of this book. However, qualitative understanding of the concept is useful.
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Figure 3.29: A pair of complex points, s and s∗ in the s plane; one is at −a+ jωo, the other at −a− jωo.
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Figure 3.30: The Bode and phase plots for a pair of complex zeroes (a),(c) and poles (b),(d).
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Problems

1. A low-pass filter is to be built using a resistor and a capacitor such that the circuit should attenuate
an ω = 10000 s−1 signal by a factor of 100. If the input impedance of the circuit should be 1 kΩ
at ω = 100 s−1, what values should be chosen for R and C?

2. A high-pass filter is to be built using a resistor and a capacitor such that the circuit should
attenuate an ω = 100 s−1 signal by a factor of 100. If the input impedance of the circuit should
be 1 kΩ at ω = 10000 s−1, what values should be chosen for R and C?

3. The circuit shown in Figure 3.31 is to be used as a filter. (a) Assuming that the inductor has zero
resistance, what is the gain of the circuit as a function of ω? (b) Is this a high-pass or a low-pass
filter? (c) What is the characteristic frequency of this filter? (d) What is the input impedance of
the filter? (e) What is the output impedance of the filter?ð� ��

L
� �ÿ� �ò���R ��ÿ� �ò������ �ðvi vo

Figure 3.31: The circuit for problems 3 and 4.

4. The circuit shown in Figure 3.31 is to be used as a filter. (a) Assuming that the inductor has a
non-zero internal resistance, RL, what is the gain of the circuit as a function of ω? (b) Is this a
high-pass or a low-pass filter? (c) What is the characteristic frequency of this filter? (d) What is
the input impedance of the filter? (e) What is the output impedance of the filter?

5. The circuit shown in Figure 3.32 is to be used as a filter. (a) Assuming that the inductor has zero
resistance, what is the gain of the circuit as a function of ω? (b) Is this a high-pass or a low-pass
filter? (c) What is the characteristic frequency of this filter? (d) What is the input impedance of
the filter? (e) What is the output impedance of the filter?ð� ��

R

� �ÿ� �ò���L ��ÿ� �ò������ �ðvi vo

Figure 3.32: The circuit for problems 5 and 6.

6. The circuit shown in Figure 3.32 is to be used as a filter. (a) Assuming that the inductor has a
non-zero internal resistance, RL, what is the gain of the circuit as a function of ω? (b) Is this a
high-pass or a low-pass filter? (c) What is the characteristic frequency of this filter? (d) What is
the input impedance of the filter? (e) What is the output impedance of the filter?

7. Show that the filter shown in Figure 3.33 has a gain of

G =
ωL/R

1 + (ωL/R)2
[(ωL/R) + j] .
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8. In problem 7 you found the gain of the RL filter shown in Figure 3.33. (a) What are the dimensions

of the gain function? (b) Sketch the ratio |Vo|
|Vi| as a function of log(ω). Label relevant limits and,

in particular, where the ratio is 1√
2
. (c) Sketch the phase difference, δ = φo − φi, as a function of

log(ω) (φi is the phase of the input voltage, Vi, and φo is the output phase). Be careful to note
if δ is positive or negative and to label relevant limits, in particular, at what frequency | δ |= π

4 .
(d) You are asked to choose components for such a circuit so that the magnitude of the output
voltage is 90% of the magnitude of the input voltage for a frequency of f = 796Hz. If you are
forced to use an inductor of L = 1mH, what value of R should you choose?

/Vi(f)

���� ��
R

�� �ÿ���L ��ÿ�������� ��� �� �òA�� �òB
Figure 3.33: The figure for problems 7 and 8.

9. A simple circuit, as shown in Figure 3.34, is built from a voltage source with input voltage vin(t) =
voe

jωt and two elements with impedance Z1 and Z2 connected in series. The output voltage,
vout(t), is measured across Z2 as shown in the figure. (a) What is the output voltage, vout, in
terms of vin, Z1 and Z2? (b) Assume that Z1 is an inductor with inductance L, and that Z2 is
a capacitor of capacitance C. Explain qualitatively why vout → vin for very low frequencies and
vout → 0 for very large frequencies. (c) What is the gain of the circuit, G(ω), in terms of ω, L
and C?
Most inductors have a small internal resistance r. If we were to account for this, we would arrive
at the following gain function.

G(ω) =
(1 − ω2LC) − jωrC

(1 − ω2LC)2 + (ωrC)2

What is the phase-shift, δ(ω), in the following three cases: (d) ω = ωo = 1√
LC

(e) ω very small

with respect to ωo, and (f) ω very large with respect to ωo?

ý��/vin

���� ��Z1 � �ÿ��� Z2��ÿ��� �òÿ���������� �òvout

Figure 3.34: The circuit for problem 9 and 10.

10. Consider the LC filter in problem 9 (Figure 3.34). Show that if the inductor has an internal
resistance r, that the gain is given as

G(ω) =
(1 − ω2LC) − jωrC

(1 − ω2LC)2 + (ωrC)2
.



102 PROBLEMS

11. You are given two RC filters as in Figure 3.35. One of these is a high-pass filter and the other is
a low-pass filter, with gains given as follows:

Glp(ω) =
1

1 + jωRC

Ghp(ω) =
jωRC

1 + jωRC
.

(a) Explain qualitatively which of the filters is a high-pass filter and which is a low-pass filter. (b)
For the low-pass filter, sketch 20dB log | G(f) | as a function of log(f). Label relevant limits and,
in particular, the −3 dB point. (c) For the low-pass filter, sketch the phase difference, δ = φo −φi

as a function of log(f) (φi is the phase of the input voltage, Vi, and φo is the output phase). Be
careful to note if δ is positive or negative and to label relevant limits, in particular, where | δ |= π

4 ?
(d) A friend from Electrical Engineering tells you that she has learned to build more complicated
low-pass filters that have a high-frequency fall-off rate, in dB/decade, twice as large as the simple
RC filter above. For her filter (at high frequencies), what is the fall-off (in dB/decade), and what
is the f -dependence of her | G(f) |?/Vi(f)

���� ��
R1

�� �ÿ����C1 ���ÿ�������� ��� �� �òA�� �òB /Vi(f)

���� ��
C2

���� �ÿ���R2 ��ÿ�������� ��� �� �òA�� �òB
Figure 3.35: The circuits for problem 11.

12. The circuit shown in Figure 3.36 is constructed from two unknown linear components with
impedances Za and Zb. A time-varying voltage, vin(t) = voe

jωt, is applied as shown. You measure
an output voltage, vout(t), at the point shown in the figure. (a) In terms of Za and Zb, what is
the gain of the circuit? (b) You are told that Zb is a resistor of value R, while Za is an inductor
with inductance L and resistance rL. In terms of R, rL and L, what is the gain of the circuit,
G(ω)? (c) Is this circuit a high-pass or low-pass filter, (explain)?

13. Consider the circuit shown in Figure 3.36 where Za = R + 1
jωC and Zb = R. (a) Show that the

gain of the circuit can be expressed as:

G(ω) =
jωRC

1 + 2jωRC

(b) At what frequency, ωo, does 20 dB log(| G |) go through the −3dB point? (Hint: What is the
maximum value of the gain?) (c) Sketch 20 log(| G |) versus logω. (d) Sketch the phase of the
gain as a function of logω. (e) Is this circuit a high-pass or a low-pass filter?ð

vin

� ��
Za

�� �ÿ�Zb ý��� �òvout

Figure 3.36: The circuit for problems 12 and 14.

14. Consider the modified RC low-pass filter shown in Figure 3.37. In the high-frequency limit, what
is the gain of the circuit? Is this circuit a good low-pass filter?
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�� �ÿ�� �ò���R2 �C ��ÿ�������� �ð �� �òvin vout

Figure 3.37: The circuit for problem 14.

15. Consider the modified RC high-pass filter shown in Figure 3.38. Show that the gain of the cir-
cuit is R2/(R1 +R2) times the gain of a normal high-pass filter with characteristic frequency
ωRC = 1

(R1+R2)C
. ð�

R1

� ��
C

�� �ÿ�� �ò���R2 ��ÿ��������� �ð �� �òvin vout

Figure 3.38: The circuit for problem 15.

16. Consider the RC filter in Figure 3.39, where the components are chosen such that R1C1 = R2C2.
(a) Show that the gain of the circuit can be expressed as G = R2

R1+R2
. (b) Show that the gain of

the circuit can be expressed as G = C1

C1+C2
.ð�� ��

R1

� ��
C1

��� �ÿ�� �ò���R2 �C2 ��ÿ������������ �ð �� �òvin vout

Figure 3.39: The circuit for problem 16./v(t)

��� ��
R

� ��
Z = jX

� ������������������� ���
Figure 3.40: The circuit for problem 17.

17. Consider the circuit shown in Figure 3.40, in which an ideal voltage source provides a time-
dependent input voltage, v(t) = V0 cos(ωt), to two elements in series. The first element is a resistor,
R. The second element has a purely imaginary impedance Z = jX. (a) If Z were an inductor,
L, what would be the value of X? (b) If Z were a capacitor, C, what would be the value of X?
(c) Find the current, i(t), flowing through the circuit. (You may give your answer as a complex
wave or just the real part. But either way you should include the proper time dependence of i(t).)
(d) Find the phase difference between the current, i(t), and the input voltage, v(t). Under what



104 PROBLEMS

conditions will the current LEAD the voltage? (e) Find the potential difference, vZ(t), across the
imaginary impedance Z = jX. Also find the magnitude of the gain, |vZ/v|. (f) Find the average
power dissipated in the resistor R. (g) Assume that Z is a capacitor of value C. At what frequency
is the magnitude of the phase angle 45◦? In the limit as the frequency gets very large, what is the
magnitude of the phase angle?



Chapter 4

Introduction to Semiconductors

4.1 Introduction

In 1948, physicists John Bardeen, Walter H. Brattain and William Shockley of Bell Telephone Laborato-
ries announced the invention of the transistor. It was also independently developed by Herbert Matarè
and Heinrich Welker working at Westinghouse Laboratory in Paris. The semiconductors that underlie
the functioning of the transistor have become nearly ubiquitous in the modern world.

In this chapter, we begin by discussing the physical principles underlying semiconductors. In par-
ticular we will examine the formation of energy bands and energy gaps. (This material is by no means
complete and the interested reader should consult books on condensed matter physics for a detailed
discussion of this topic.

We then move on to discuss the diode, one of the simpler semiconductor circuit elements. We also
examine a small number of diode circuits. Again, the interested reader should consult a book such as
Horowitz and Hill for a more complete listing of such circuits.

A discussion of diodes leads naturally to the bipolar transistor, which we will study in chapter 5.

4.2 Energy Bands in Materials

Let us look at a single atom consisting of a closed core of electrons around the nucleus and a single
electron outside the core. We can talk about the electron moving in a potential about the positive charge
at the center of the atom as shown in Figure 4.1. For the single electron, there are a set of solutions to
the Schroedinger equation, ψn(x). Each wave function, ψn(x), has an energy eigenvalue of En, and for
the electron in the nth state, the probability of finding the electron at some position x is ψ∗(x)ψ(x).
We can generalize this to more than one outer electron, though it is usually difficult or impossible to
write down an analytic expression for ψn.

Now assuming that we have two such atoms with their closed cores centered at ±a
2 as shown in

Figure 4.2. We will assume that there is a single outer electron that can move between the two atoms.
In the case of the two atoms very far apart, we have two possible solutions to the Schroedinger equation.
If the electron is around the atom to the right, we would find ψn(x− a

2 ), while if the electron is around
the left-hand atom, the solution would be ψn(x+ a

2 ). In both cases, the electron would have energy En

corresponding to the energy eigenvalue of the wave function ψn.

In reality, the above two solutions can only be approximate solutions for our atoms. In particular,
our potential is symmetric about x = 0 which means that the probability of finding the electron at x
should be equal to that at −x. This means that our wave function must satisfy the relation that

ψ(−x) = ±ψ(x) .

105
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V(x)

x

Figure 4.1: The electric potential around an atom.

In order to satisfy this condition, we can build two linear combinations of our above wave functions.

ψA =
1√
2

(

ψn(x− a

2
) + ψn(x+

a

2
)
)

(4.1)

ψB =
1√
2

(

ψn(x− a

2
) − ψn(x+

a

2
)
)

(4.2)

For the case when the two atoms are very far apart, the energy eigenvalues for these two solutions
are equal to the energy of a single atom, En and are said to be degenerate.

EA = EB = En

If we now push the two atoms closer together by making a smaller, then we will eventually reach a point
where the electron can easily hop back and forth between the two atoms. The wave functions above
can still be used to approximate the the solutions, but the degeneracy between the two energies will
be broken. The electric potential for such a configuration is depicted in Figure 4.2. Not only do the
wave functions allow for the electron to be found near either of the two atoms, but the two degenerate
energies split into distinct levels. One of these wave functions will have a higher energy than the other
(Figure 4.3). The wave function derived from the sum (the symmetric wave function) has the lower
energy, while the one arising from the difference (the antisymmetric solution) has the higher energy.
In addition, each of these wave functions describes a situation in which the electrons are no longer
associated with a single atom, but rather with both atoms.

Let us continue to add atoms, up to n, in an evenly-spaced one-dimensional array. We will assume n
is quite large. As happened with two atoms, the n identical wave functions of the individual atoms mix.
This results in n wave functions that are linear combinations of the products of the original ones. In
addition, the n degenerate energy levels split into n new levels as shown in Figure 4.4. The spacing of
the levels within the band scales like 1/n times the width of the band. For large numbers of atoms, this
spacing can be quite small—10−7eV—compared to the width of the band itself (which is on the order of
0.1 eV ). This spacing is significantly smaller than the thermal energy, kBT , of the atoms. Rather than
distinct energy levels, we now have a band of allowed energy levels. Because of thermal motion, any
energy within the band is allowed. We also have wave functions that are spread out over all of the atoms
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V(x)

xa/2-a/2

Figure 4.2: The potential well around two atoms that are close enough together for the electrons to hop
back and forth between them.

1 2

EA

EB

EE

Figure 4.3: The two degenerate energies E1 and E2 split into two distinct energies. The higher energy, EB ,
corresponds to the antisymmetric wave function, while EA corresponds to the symmetric situation.

rather than being localized to individual atoms. The electron inside an energy band is in principle free
to move within the band.

Energy
Band

n degenerate
levels

Figure 4.4: The n degenerate energy levels have split into n very closely spaced energy levels. This is referred
to as an energy band. Typically the spacing between the individual levels is much smaller than the thermal
energy, kBT , of the atom.

The formation of energy bands leads to a shift from distinct levels to the formation of a band
structure with gaps of forbidden energies. This is depicted in Figure 4.5. The nominal atomic levels are
shown on the left. As the atoms come together in a solid, we eventually form the band and gap structure
shown on the right. A key point here is that this happens to all the energy levels, even the ones that
are not occupied by electrons. This leads to energy bands that are filled, bands that are partially filled,
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and bands that are empty.

Gap

Gap

Levels Bands

Figure 4.5: The splitting of distinct atomic energy levels into a band-gap structure.

4.3 Conduction in Materials

We recall from chapter 1 that the current density in a material is

~J = n · q · ~v

where q is the charge of the current carrier, ~v is the average velocity of the carrier, and n is the number
of charge carriers per unit volume. Implicit in this definition is that there are charge carriers, and
that they are able to move through the material. Both of these conditions are satisfied if we have an
energy band whose available states are not fully occupied with electrons. Such a band is known as a
conduction band. The existence or nonexistence of such a band depends on the atomic, molecular and
crystal structure of the material.

As we move through the elements, the number of electrons in the outer shells change. Materials like
the noble gases have completely filled outer shells , while the alkali metals have single electrons in the
outermost shell. However, for conduction we cannot talk about single atoms, but rather the solid form
of the material. This means that not only are the atoms themselves important, but how the outermost
electrons arrange themselves in the solid.

In metals, a partially filled band allows conduction. An example of this is shown in Figure 4.6,
where the density of charge carriers (electrons) is plotted against the energy of the system. At zero
temperature, the levels up to the Fermi Energy are filled, and those higher are empty, as indicated by
the rectangular box extending to EF in Figure 4.6. For a finite temperature, thermal excitation of atoms
can provide energy for electrons to move into the empty levels. This is indicated by the curved line
near EF in Figure 4.6. Because there are empty, available levels in the band, electrons are able to move
through the material. In particular, if we apply a potential difference across the material, electrons will
move through the material with some non-zero average velocity, while the number of charge carriers
corresponds roughly to the number of electrons in the band.
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n(E)

EEF

Top
  of
Band

Empty
Levels

Figure 4.6: The filling of energy levels in some material. At zero temperature, all levels below the Fermi
energy, EF , are filled, and all those above it are empty. For finite temperature, thermal energy can excite
electrons into the empty levels above EF , thus depleting the levels just below EF . This is indicated by the
curved, dashed line near EF .

For certain conducting materials, the conduction band may be nearly full. Figure 4.7 shows such a
band. Plot (a) shows the occupancy of each level. If we apply a potential difference across the material,
the charge carriers (electrons) will again flow through the material. However, we may well find that the
conduction is not proportional to the number of electrons, n, but rather the number of empty levels—the
holes into which the electrons can move. Figure 4.7(b) shows the energy levels in such a material. The
conduction band is filled up to the Fermi energy and there is an energy gap between the top of the
conduction band and the empty band above it.

E
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y

Empty
 Band

E gap

n(E)

E
ne

rg
y

Band
Conduction

FEFE

Figure 4.7: A nearly full conduction band in some material. Figure (a) shows the levels filled up to the Fermi
energy, which is below the top of the band. (b) shows an energy diagram with the nearly filled conduction
band, a energy gap, Egap and then an empty band above that. The Fermi energy is inside the conduction
band.

Figure 4.8 describes the two possible types of moving charge carriers. For the case where the
conduction band is not nearly-full, we have the situation depicted in Figure 4.8(a). A potential difference



110 CHAPTER 4. INTRODUCTION TO SEMICONDUCTORS

is applied to the material such that the bottom is more positive than the top. Electrons then move
down through the material as shown in the time steps moving from left to right. In the case where the
condition band is nearly full, we have the situation depicted in Figure 4.8(b). The holes into which the
electrons can move are much more sparse, so as electrons flow through the material it actually appears
as if the holes are moving in the opposite direction from the electrons. In this latter case, we can think
of the conduction in two ways. The obvious is that there are some number of holes into which negative
charge carriers (electrons) can move from top to bottom, or alternatively, that the holes behave like
positive charges moving from bottom to top. Both of these views are equivalent, but we will find the
latter more useful in the situations where the bands are nearly full. It appears that the conduction
occurs with the holes moving from the more positive side to the more negative side of the material.

P
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io

n

+ + + + +

− − − − −

Time 
Positive

Negative(a)

P
os

it
io

n

+ + + + +

− − − − −Negative

Time 
Positive

(b)

Figure 4.8: Conduction of electrons and holes through a solid. The electrons are shown as black circles
filling the white holes. The bottom of the material is at a higher potential than the top. In (a), an electron
moves from the top to the bottom of the material. In (b), the electrons move down to fill the available hole.
The hole appears to move upward, so that positive charge flows from high potential to low.

We now consider a material in which all the levels in the conduction band are filled. In a solid, this
can either be because the atom’s shells are individually full, or because the bonds formed in making the
solid have filled them. In such a case, there is no place within a band for an electron to move when an
external voltage is applied. The material behaves as an insulator. However, it is possible for the material
to conduct if we could either create holes in the filled bands (remove electrons), or cause some of the
electrons to jump from the full band to the empty one above it. These bands are shown in Figure 4.9.
In fact, if an electron were to somehow jump from the filled to the empty band, it would both leave a
hole in the filled band, and provide an electron for conduction in the empty band.

4.4 Semiconductor Materials

Because the ability of a material to conduct depends on the density of charge carriers, n, we would like
to know how often in an insulator we would find an electron-hole pair created. If the material is at some
finite temperature T , then the relative probability of finding an electron in the empty band divided by
the probability of finding it in the conduction band is:

PE/PF =
e−(E+Egap)/kBT

e−(E)/kBT

PE/PF = e−Egap/kBT . (4.3)

At room temperature, kBT is approximately 1/40 eV . The band gaps, Egap, for a few materials are
given in Table 4.1. For crystal silicon, Egap = 1.1 eV . This yields a relative probability of about
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Figure 4.9: A material in which the lower energy band is completely full, and the upper one is empty with a
gap between the two bands. The Fermi energy lies in the gap. At zero temperature, conduction will not be
possible. At finite temperature, some electrons may be thermally excited into the empty band, which then
allows conduction. This is indicated by the T > 0 occupation curve in the figure.

e−40 ≈ 4 × 10−18, while a 2 eV gap would give a relative probability of about 2 × 10−35. In silicon, a
very tiny number of electron-hole pairs are created at room temperature, while for materials with larger
band gaps, there are nearly none. Materials that conduct because of this thermal excitation are referred
to as semiconductors. In fact, the materials in Table 4.1 are all semiconductors. They are all materials

Material Band Gap
CdS 2.4 eV
Si 1.1 eV
Ge 0.7 eV
Te 0.3 eV
InSb 0.2 eV

Table 4.1: Band gaps of several semiconductor materials.

in which bonds formed between the atoms lead to a completely filled band. Effectively all possible bond
sites are occupied. On a two-dimensional crystal lattice, one could visualize this using a square crystal
structure. In such a picture, each atom has a bond to its nearest four neighbors, each of which is filled.
This is shown schematically in Figure 4.10(a). The materials that make up typical semiconductors come
from the part of the periodic table shown in Figure 4.10(b). The most common semiconductor material
is silicon. It has four outermost electrons that can pair up with four adjacent atoms to created a filled
energy band. Germanium is similar and is also a common semiconductor. Table 4.1 lists the band-gap
energy of a few semiconductor materials including two materials that combine an element to with more
electrons than silicon with another element fewer electrons than silicon.
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(a)

Si PAl

Zn Ga Ge As

SbSnCd
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B C N O

In Te

Se

(b)

Figure 4.10: On the left is a schematic drawing showing the bonds between atoms in a crystal. The crystal
has a completely filled energy band, which at zero temperature means that it is an insulator. However, at
room temperature, sufficient electrons are thermally excited into the next band that the electrons in the
excited band and the holes in the original band allow for finite conduction in the material. On the right is
the part of the periodic table which the materials that make semiconductors are found.

4.4.1 Doped Semiconductors

The number of conduction of electrons in a semiconductor depends on the temperature and the band gap
in the material. As we saw above, in most pure materials—even silicon–this number is too small to be
useful. It becomes much more interesting when we no longer consider a pure semiconductor, but rather
contaminate, or dope, the semiconductor with some other material. It is these doped semiconductors
that are at the heart of all modern electronics.

Let us consider a semiconductor with a crystal structure as we saw in Figure 4.10. To this we mix
in, or dope with, some small amount of an element with more electrons than the semiconductor (to the
right of the material in the periodic table). For each of these doping atoms there will be an unpaired,
and loosely bound electron associated with it. This is shown schematically in Figure 4.11(a) where the
loosely bound electrons are shown as a circle around each of the scattered doping atoms.

The energy level diagram for this material is shown in Figure 4.11(b). The band gap is still there,
as before, but we see the addition of the so-called donor levels to the diagram. It is in these levels that
the loosely bound electrons are found. The key feature about these is that the energy gap between the
donor levels and the empty conduction band is small compared to total band gap. Typical values are
on the order of .02 to .03 eV , which are comparable to the thermal energy kBT . Most of these donor
electrons are actually thermally excited into the conduction band, and the material can conduct.

A doped semiconductor in which electrons are thermally excited into the conducting band is known
as an n-type semiconductor. The negative charge carriers (electrons) are known as the majority carrier
in an n-type semiconductor. The positive carriers (holes) are known as the minority carrier. While
seemingly obvious, we emphasize that there are far more majority carriers than minority carriers in a
doped semiconductor.

If instead of an element on the right-hand side of semiconductor material, we had chosen something
from the left-hand side, the doped semiconductor would look like that shown in Figure 4.12(a) and
be known as a p-type semiconductor. Here, there will be holes in the crystal structure into which an
electron could go. These are indicated as the smaller atoms with circles around them. When we look at
the energy level diagram, these holes appear as acceptor levels in the diagram. These are just slightly
above the top of the full band, and again the energy gap to these levels is small. This means that most
of these acceptor levels have an electron from the filled band thermally excited into them, leaving a
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Figure 4.11: An n-type semiconductor. (a) shows a doped semiconductor in which the lighter colored
atoms with circles around them represent an atom with an extra, or loosely bound electron. (b) shows the
corresponding energy level diagram. The loosely bound electrons occupy the donor levels in the plot.

large number of holes in the formerly full band. This becomes a conduction band, with holes serving as
the conductors. In a p-type semiconductor, the holes are the majority carrier and the electrons are the
minority carrier.
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Figure 4.12: A p-type semiconductor. (a) shows a doped semiconductor in which the smaller dots with circles
around them represent atoms missing an electron in their crystal structure. (b) shows the corresponding
energy level diagram. The missing electrons correspond to the acceptor levels in the plot.

The conductance, G = i/v, in a semiconductor bar of material of cross-sectional area A and length
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L is

G = σ

(

A

L

)

, (4.4)

where σ is the conductivity of the material, which in a semiconductor, is

σ = q (µen+ µhp) . (4.5)

The quantities n and p are the number of negative and positive charge carriers per unit volume. q is
the electric charge of the charge carriers, and the µs are their mobility. This latter quantity effectively
measures how easy it is to move the charges.

In doped semiconductors, conduction is dominated by one type of charge carrier. However, it is
because both are present that these materials acquire some of their more interesting properties, as we
will see later in this book.

4.4.2 The pn Junction

If we place an n-type material in contact with a p-type material, we create a junction, as shown in
Figure 4.13(a). At such a junction, electrons will diffuse from the n-type material into the p-type as
shown in Figure 4.13(b). As the diffusion occurs, the n-type material will acquire a net positive charge,
while the p-type will acquire a net negative charge. This will set up an electric field from the n-type
material towards the p-type material that will oppose additional diffusion, leaving the n-type material
at a higher potential than the p-type, Figure 4.13(c). It is easy to see that this pn-junction can be used
as a rectifier; indeed, it is the basis of the diode.

If we connect an external voltage source to the pn-junction as shown in Figure 4.14, then we can
either increase or decrease the potential difference between the two sides of the junction. If we raise the
potential of the n-type material relative to the p-type, we increase the potential difference between the
two sides, making it even more difficult for current to flow. This is known as a reverse-biased junction.
If we forward-bias the junction by raising the potential of the p-type material relative to the n-type,
then we will lower the potential difference between the two sides. At some point current will start to
flow.

Let us now try to be a bit more precise about this. If the external voltage is zero, some small number
of electrons and holes still flow across the junction. However, the number of going from n-type to p-type
equals the number going from p-type to n-type, so the net current flow is zero. If we consider the
electrons, a few of them have sufficient thermal energy to move from the n-type to the p-type material.
This current is known as the electron generation current, Ige

. We also have electrons in the p-type
material that diffuse to the boundary and are swept into the n-type material. This current is known as
the electron recombination current, Ire

. In order for the net electron current to be zero,

Ige
+ Ire

= 0 .

We can make analogous arguments for the holes, leading to

Igh
+ Irh

= 0 .

We first consider a reverse-biased junction. Assume that we apply some external potential V , raising
the potential of the n-type material relative to the p-type material. The number of electrons that have
sufficient energy to participate in the electron generation current is proportional to e−eV/kBT , which
means that electron and hole-generation currents for some voltage −V are as follows:

Ige
(−V ) = Ige

(0)e−eV/kBT (4.6)

Igh
(−V ) = Igh

(0)e−eV/kBT (4.7)
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Figure 4.13: A pn junction (a) showing an n-type material in contact with a p-type material. In the n-type
material, the charge carriers are electrons. In the p-type, they are holes. (b) shows the same junction in
which some of the electrons from the n-type material have diffused into the p-type material. This sets up a
potential difference, ∆V , across the junction, shown in (c).

Both of these quickly go to zero as | −V | is made larger than kBT/e. The regeneration currents arise
from diffusion of charge, and do not depend on the voltage V . So, in reverse-biased operation, the
current through the junction is

Ireverse ≈ Ire
+ Irh

.

If we now forward-bias the junction, then the generation currents in equations 4.6 and 4.7 become
the following.

Ige
(V ) = Ige

(0)eeV/kBT (4.8)

Igh
(V ) = Igh

(0)eeV/kBT (4.9)

These quickly dominate the regeneration currents as V is made larger. If we define the saturation
current, IS , to be

IS = Ige
(0) + Igh

(0) = −Ire
(0) − Irh

(0) ,

then we can write that the total current through the junction is

I(V ) = IS

(

eeV/kBT − 1
)

. (4.10)
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n−type p−type

∆V
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V

Figure 4.14: A pn junction to which an external voltage is used to bias the junction. The junction shown
is forward-biased: the external voltage decreases the potential difference between the positive and negative
sides. As this difference decreases, charge can flow through the junction. If the junction is reverse-biased,
the potential difference between the n-type and p-type material increases.

The quantity kBT/e has dimensions of Volts. Recalling that the Boltzmann constant is kB = 1.38 ×
10−23 J/K and the electron charge e = 1.6−19 C, we can evaluate this factor as a function of temperature.
For room temperature, T = 293K, we find that kBT/e = 24.3mV . The exponential in equation 4.10
leads to large changes in current for small changes in voltage. Alternatively, if we consider some finite
range of current, then the exponential gives rise to what appears to be a nearly constant voltage drop.
We refer to this nearly constant voltage drop as the threshold voltage, Vth. Figure 4.15 shows some
example I-V curves for currents in the range of a few hundred milliamperes,

If the forward bias voltage is less than Vth, then very little current can flow through the junction. For
a larger forward bias across the junction, a large current can flow. The value of the Vth is controlled by
both the temperature of the junction and the saturation current. Typical values of IS for silicon-based
junctions are in the range of 1 to 10 pA. As shown in Figure 4.15, this leads to a threshold voltage of
0.6 to 0.7V for diode currents on the order of a few hundred mA. Germanium-based semiconductors
have threshold voltages on the order of 0.2 to 0.3V , leading to saturation currents on the order of mA
for similar diode currents.

4.5 Diodes

The pn-junctions which we have discussed are known as diodes, and, for the most part, Figure 4.15 is a
very good representation of their I-V curves. The pin connected to the p-type semiconductor is known
as the anode, while that connected to the n-type is the cathode. In circuits, we typically model diode
behavior in a somewhat simpler fashion. The following two rules are very useful in analyzing diode
circuits.

• If the forward bias applied to the diode is larger than Vth, then the current flowing through the
diode is whatever it needs to be to make the voltage drop across the diode equal to Vth.



4.5. DIODES 117

0

50

100

150

200

250

-0.5 0 0.5 1
Voltage [V]

C
ur

re
nt

[m
A

]
Is=1pA
Vth=0.65V

Is=10pA
Vth=0.60V

Is=0.5mA
Vth=0.30V

Figure 4.15: The I-V curve of a pn-junction as given by equation 4.10. We show the response for various
values of the saturation current, IS , for total currents in the range of a few hundred mA.

• If the forward bias applied is less than Vth, or the diode is reverse biased, no current flows through
the diode and the voltage drop across the diode is the applied voltage.

Throughout the following, we will assume that we are using diodes with Vth of 0.6 to 0.7V . We use the
average value of Vth = 0.65V for this, but it important to remember that this is only an approximation.
The following example shows an application of this model to diode behavior.

�Vi

������������ ���ùI1 �R1 ��ÿ���R2 ùI2 ��ÿ����� �������� ����� �ÿ�����ùID ��ÿ����� ��� �ò�� �òVout
Figure 4.16: A diode attached across the output of a voltage divider.
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Example: Consider the voltage divider shown in Figure 4.16. The input voltage is Vi = 10V and the
lower resistor has a value of R2 = 1 kΩ. We examine two cases for the value of R1: 19 kΩ and 9 kΩ. We
can determine the voltage, Vout, across R2, and the current, I2, through R2 in each case. Let us start
by ignoring the diode in the circuit. In this limit we have:

Vout = Vin
R2

R1 +R2

which leads to the following voltages for the two different values of R1.

V
(19)
out = 0.5V

V
(9)
out = 1.0V

We now put the diode back into the circuit. In the 19 kΩ case, the voltage across the diode will be
0.5V . This voltage is smaller than the 0.65V needed to turn the diode on. As such, no current will
flow through the diode. In this case, Vout will remain 0.5V , and the current through R2 will be 0.5mA.

On the other hand, if R1 is 9 kΩ, then the initial voltage across the diode will be 1.0V . This is larger
than the 0.65V needed to turn the diode on. As such, the diode will turn on and current will start
flowing through it Vout = 0.65V . If there is 0.65V across the diode, there will also be 0.65V across
R2. This means that I2 = 0.65V/1 kΩ = 0.65mA. We know that there must be a 9.35V drop across
R1, which means that the current through R1 is I1 = 9.35V/9 kΩ = 1.04mA. The current through the
diode is then ID = I1 − I2 = 0.39mA.

4.5.1 Limitations on Diode Voltages

In a forward-biased diode, current flows to keep the voltage drop across the diode at the nominal diode
drop, ≈ 0.65V . Of course, there is a limit to how much power the diode can handle before it is damaged.
In a reverse-biased diode, we do see a small reverse current, Ireverse. The number of charge carriers
available is fixed. However, if the voltage is increased, the speed of these carriers can increase. At
some point, they acquire sufficient energy to knock electrons out of the lattice. This produces both
conduction electrons and holes, which in turn allows a much larger current to flow. The voltage at
which this current starts to flow is known as the breakdown voltage and this effect is called avalanche
multiplication.

A second reverse-bias effect can also occur in diodes. In this case the electric field in the junction
layer can become so strong that it can dislodge electrons directly from their covalent bonds. This process
is known as Zener breakdown. Both Zener breakdown and avalanche multiplication produce the same
effect: a rapid increase in reverse current once the breakdown voltage is exceeded. Figure 4.17 shows
the I-V curve of a diode including the breakdown voltage and large increase in the reverse current.

Diode breakdown at larger reverse voltages is typically due to avalanche multiplication, while lower-
voltage breakdowns are usually Zener breakdown. If one is building a circuit that relies on the diode
being reverse-biased, it is necessary to make sure that the breakdown voltage is not exceeded.

4.5.2 Zener Diodes

From the I-V curve in Figure 4.17, we can see that the voltage is nearly independent of current for
diodes in the breakdown region. Zener diodes are designed to exploit this property, and are often used
in circuits to provide a voltage reference. They are also referred to as voltage reference diodes, and
are available in a large range of breakdown voltages from a few volts up to a several of hundred volts.
Even though they are referred to as Zener diodes, they can break down by either the Zener effect or
avalanche multiplication. Figure 4.18 shows the symbol for a 5.6V Zener diode. Note the symbol is
slightly different than that for a normal diode. Also note that the breakdown voltage is indicated on
the symbol.
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Figure 4.18: A 5.6V Zener diode with its breakdown voltage labeled in the circuit.

Example: Let us return to the voltage divider example we worked out earlier (see Figure 4.16).
However, rather than a normal diode, we will use a 5.6V Zener diode, as shown in Figure 4.19. The
input voltage is Vi = 11.2V and the upper resistor has a value of R1 = 1 kΩ. If R2 is smaller than R1,
then the device functions as a voltage divider. However, if R2 is larger than R1, then the circuit wants
to have more than 5.6V across R2. This exceeds the breakdown voltage of the Zener, which allows
current to flow. The voltage across R2 will never be able to exceed 5.6V .

4.6 Simple Diode Circuits

In this section, we present a few simple circuits involving diodes. These include the rectifier, which is
used to convert from alternating to direct current, as well as circuits which use diodes to protect other
circuit elements.
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�Vi
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Figure 4.19: A Zener diode attached across the output of a voltage divider.

4.6.1 Conversion from AC to DC

Electricity is transmitted as alternating current, AC, but many of the appliances that are part of
everyday life run on DC. The conversion from AC to DC is accomplished with a rectifier. This operation
is important enough that will examine it in some detail, designing a series of progressively better circuits
to carry it out.

While AC is used to transmit power throughout the world, the exact specification of the AC
depends on where one is. In North America, the AC has a frequency of 60Hz and an RMS
voltage of 110V . In Europe, the frequency is 50Hz and the RMS voltage is 220V . Since
what we often need is DC voltages, one might ask why electricity is not transmitted as such.
One of the reasons that with AC, it is easy to change the voltage by using a transformer
without loosing too much energy in heat. In such a conversion, the product of voltage times
current stays constant. A second, and more important reason has to do with resistive power
loss. Such a loss is given by I2R. For a fixed power being delivered, a higher voltage leads
to a smaller current, and hence a smaller power loss. While we could transmit DC at a high
voltage, there is no simple device like the transformer to change the voltage. Unfortunately,
most modern electrical appliances use DC at some level, and all have some circuit that
converts AC to the needed DC circuit. Most homes today are swamped with AC to DC
converters plugged into power strips.

The Half-wave Rectifier

Figure 4.20 is shows a half-wave rectifier. A transformer steps the AC line voltage down to a level more
closely matched to the desired DC voltage. This is then passed through the circuit on the right, which
consists of a diode and a resistor. Figure 4.21 shows the voltage across the resistor for a sinusoidal input
voltage, vi(t) = V0 cos(ωt). During the part of the AC cycle in which the voltage at the upper input
terminal is more positive than that on the lower by at least one diode drop, the diode will allow current
to flow. This will yield a voltage across the resistor that follows the positive cycle of the cosine function,
minus the diode drop voltage.

Assuming that we do not exceed the breakdown voltage of the diode, in all other cases, the diode
will not allow current to flow and the voltage across the output resistor will be zero.

The Full-wave Rectifier

The half-wave rectifier does not use the negative part of the cosine function and hence transmits only
part of the power reaching it. By clever arrangements of diodes, we can avoid this problem. The circuit
that does this is known as a full-wave rectifier and is shown in Figure 4.22. On the positive part of
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Figure 4.20: A half-wave rectifier circuit. An input source voltage, vs, is shifted to vi in the transformer.
The voltage vi then goes through the half-wave rectifier. The output as measured across the resistor, vo, is
shown in Figure 4.21.
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Figure 4.21: An input voltage is, vi(t) = Vo cos (ωt), is fed into the half-wave rectifier circuit shown in
Figure 4.20, producing the indicated voltage across the resistor.

the cosine cycle, the upper-right and lower-left diodes function as a half-wave rectifier. However, on the
negative part of the cycle, the lower-right and upper-left diodes also function as a half-wave rectifier, of
the same polarity as before. This yields the output voltage shown in Figure 4.23. This is approximately
the absolute value of the cosine input, but minus two diode voltage drops.

� ���� �ð��� �ðvs
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Figure 4.22: A full-wave rectifier circuit.

A Buffered Full-wave Rectifier

Assuming that the frequency of the input AC voltage is known, and constant, it is possible to use a
capacitor to smooth out, or buffer, the voltage of the full-wave rectifier. This is certainly the case when
converting the AC line voltages with frequencies of 50 to 60Hz. In Figure 4.24, we have placed a
capacitor across the output of the rectifier. This forms an RC circuit with the output resistor, with a
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Figure 4.23: The output voltage from the full-wave rectifier.

characteristic time of τ = RC. If the characteristic time is large compared to 1
2 the period of the input

wave, then the capacitor will charge up near the peaks of the cycles, but not have sufficient time to fully
discharge during the troughs. The voltage across the resistor will resemble that shown in Figure 4.25.
Here, we have achieved something very close to a DC voltage.

� ���� �ð��� �ðvs
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Figure 4.24: A full-wave rectifier circuit with a capacitor to filter the output voltage.

Voltage Regulators

For the sake of completeness, we will go the last step and add a solid-state voltage regulator chip to
the output of our full-wave rectifier. Such a circuit is shown in Figure 4.26. The regulator is able to
output a constant, very-low-ripple output voltage as long as the input voltage is within some finite range,
typically, a fraction of the output voltage to several times the output voltage. As such, the buffering
capacitor from the previous section is crucial, so the output voltage of the full-wave rectifier never falls
below the minimum needed by the regulator.
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Figure 4.25: The output voltage of a full-wave rectifier with a buffering capacitor to smooth out the voltage.
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Figure 4.26: A full-wave rectifier circuit with a filter capacitor and a solid-state voltage regulator.
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4.6.2 Diode-controlled Battery Backup

Related to the rectifier, which converts AC to DC, are battery backup circuits. These are used in
devices that we do not want to shut off during brief power outages. While they are often associated
with computers, they are far more ubiquitous than that. Many clocks, particularly alarm clocks, have
battery backups.

A typical circuit is shown in Figure 4.27. The important point in this circuit is that the supply
that has the higher voltage will have sufficient voltage drop across its diode to power the device. The
other supply will not. Here, the DC supply runs at slightly higher voltage than the battery. When it is
working, it supplies power; if it goes off, the battery becomes the higher voltage, and powers the device.

+

−

DC Supplyü� �ðAC Input
� �ð �������ÿ����ÿ��ý����� �− +

Batteryü������ÿ��� � Deviceü���������
�

���������������� �
� ��� �

Figure 4.27: A battery backup for a DC power supply driving some device. The nominal voltage of the
battery is slightly lower than that of the DC supply. The diodes only allow only the device with the higher
voltage to provide current to the device. If the DC supply fails, its voltage goes to zero and the battery takes
over.

4.6.3 Diode Voltage Clamp

A diode clamp maintains the voltage at some point at or below some specified value. The circuit shown
in Figure 4.28 prevents the output voltage of the circuit from exceeding VCC plus one diode voltage
drop. If the voltage were to become larger than that, then sufficient current would flow through the
diode to pull the voltage back to the maximum voltage. Such a circuit is useful in preventing voltage
spikes from damaging circuits. The diode functions as a protection element.ð

in
�� ��

R

�� �ÿ�� �ò
out�����ñVCC

Figure 4.28: The voltage clamp prevents the output from exceeding VCC plus one diode drop.

4.6.4 Diode Voltage Limiter

Related to the voltage clamp is the voltage limiter shown in Figure 4.29. In this circuit, if the output
either exceeds or falls below the desired value by mores than one diode drop, then current will flow
through the appropriate diode to keep the voltage within the specified range. Such a circuit can be
modified by placing more than one diode in series in each limiter. We can also replace the ground with
some other reference voltage.
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Figure 4.29: The voltage limiter maintains the signal within ±1 diode drop of ground.

4.6.5 Inductive Kick Blocker

Because the voltage across an inductor is proportional to how fast the current is changing in the inductor,
if a switch is opened or closed when connected to an inductor, a large voltage, or kick, can result. A
diode can be used to limit this kick by providing a path for the current to take to ground. This prevents
a spark, or some other arcing, from occurring near the switch. Such a circuit is shown in Figure 4.30.

ý���Switch

��ÿ���L ���
�óV ���� ������������ �ÿ

Figure 4.30: When the switch is opened or closed, the current changes rapidly in the inductor. This can
cause a very large voltage drop across the inductor. The diode limits this by allowing current to flow through
it.
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Problems

1. If we have an n-type doped semiconductor in which the donor level is 0.05 eV below the nominally
empty conduction band, what fraction of the donor electrons are in the conduction band if the
semiconductor is at 100K? If it is at 200K? If it is at room temperature? What are the
consequences of this material in using semiconductors employed in space exploration?

2. Assume that the individual energy levels in a conduction band are actually spaced by about
10−5 eV . At what temperature do these spacings become similar to the thermal energy?

3. In pure silicon, the band gap is 1.1 eV . At what temperature are 1% of the electrons in the
conduction band?

4. Typically, we assume a diode to have a specific diode drop voltage. Consider a diode with a
saturation current of 10 pA and an operating current range between 5mA and 100mA. By how
much does the diode-drop voltage vary over this range of currents?

5. Consider the half-wave rectifier shown in Figure 4.20 where the transformer puts out a voltage
with frequency f = 60Hz and amplitude 10.0V . Assuming that the diode drop is zero, what is
the average output voltage over one full cycle? What is the RMS voltage over one full cycle?

6. Consider the half-wave rectifier shown in Figure 4.20 where the transformer puts out a voltage
with frequency f = 60Hz and amplitude 10.0V . Assuming that the diode drop is 0V , what is
the average output voltage over one full cycle? What is the RMS voltage over one full cycle?

7. Consider the full-wave rectifier shown in Figure 4.22 where the transformer puts out a voltage
with frequency f = 60Hz and amplitude 10.0V . Assuming that the diode drop is zero, what is
the average output voltage over one full cycle? What is the RMS voltage over one full cycle?

8. In Figure 4.24, a filtering capacitor is used to hold up the voltage. If the output of the transformer
has a frequency of 60Hz and the resistor has a minimum value of R = 5000Ω, what value of C
should be chosen to insure that the voltage does not drop below 50% of the maximum value?

9. A device needs an input voltage in the range of 4.35V to 5.65V . Design a diode circuit that will
do this.

10. A solid-state voltage regulator such as the LM7805 takes an input voltage between 7V and 30V
and provides a DC output of 5V . Explain what the output of the circuit in Figure 4.26 would be
if we did not use the capacitor, C, in the circuit.



Chapter 5

Transistors

5.1 Introduction

Up until now, we have been dealing with passive circuit elements, none of which are able to increase the
power of an input signal. In this chapter, we will start to look at an important class of active circuit
elements known as transistors that can increase or amplify, the power of their input. Initially one might
say that this violates the first law of thermodynamics. However, as we would expect, we use an external
supply to provide the needed energy to the circuit. The active element simply feeds the supplied energy
into the output signal. A black-box diagram of such an element is shown in Figure 5.1. The box has
inputs and outputs, like our previous circuits; the new piece is the mechanism to provide external power.
This is shown as VCC and the ground in Figure 5.1. This external power will typically be provided as a
DC voltage, Vcc, which is measured relative to ground. One consequence of this is that the maximum of
vo(t) is VCC . In order to be able to produce signals with large voltage outputs, we will need to provide
a large VCC . In some cases, we may replace the external ground with a second supply voltage, VEE . As
with VCC , this also puts limits on the output of the circuit.

C

DB

A

Box
Blackv (t) v (t)i o

Vcc

ground

Figure 5.1: An active black-box circuit. The circuit has an input, vi(t), an output, vo(t), and a mechanism
for supplying external power, Vcc and the ground connection.

In discussing transistors, we will start with a simple overview of bipolar junction transistors—often
referred to as bjts. We will then look at the details of the semiconductor junctions in the transistor, and
then return to a more detailed discussion of transistor operation. This will then be followed by some
specific examples of transistor circuits. Finally, we will briefly discuss field effect transistors.

127
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5.2 Bipolar Junction Transistors

5.2.1 Overview of Operation

A bipolar junction transistor is effectively a sandwich of three different semiconductor layers. There
are two types: a negative-positive-negative sandwich and a positive-negative-positive sandwich. These
are referred to as npn and pnp transistors respectively. Figure 5.2 shows the symbols for each of these
transistors.

Transistors are three-lead devices, with one lead coming from each of the three layers of the sandwich.
The one connected to the middle layer is known as the base. The other two leads are known as the
collector and the emitter. (When discussing transistors, we use the abbreviation B, C and E to refer
to the base, collector and emitter respectively.)�� �ÿbase

��ÿcollector��ÿ
emitter

�� �ÿbase

��ÿcollector��ÿ
emitter

Figure 5.2: On the left is the symbol for an npn transistor; on the right is a pnp transistor. Both symbols
show the three terminals of a transistor: base, collector and emitter.

In this section, we will examine the behavior of the npn transistor. However, the same principles
hold true for the pnp transistor if one reverses the voltages. We will start with the behavior of an npn
transistor in its normal operating mode. Figure 5.3 shows DC voltages (VB , VC and VE) connected to
the three terminals of the transistor. It also shows current flowing into the base and collector, IB and
IC , and current flowing out of the emitter, IE . Normal operation of the transistor will occur when the
base-emitter junction is forward biased, VBE = VB − VE > 0, and the base-collector junction is reverse
biased, VBC = VB − VC < 0. In fact, inside the transistor, the connection from B to E looks like a
diode. Usually VBE ∼ 0.6 to 0.7V . This is not something that we design, it is just the way that diodes
work. We will assume VBE = 0.65V in the following discussion, but it is understood that the exact
value of this drop depends on the transistor used. The connection from B to C also looks like a diode,
but because this is reverse biased, no current flows from C to B. Finally, it is straightforward to see
that VCE = VC − VE > 0. �ÿB� �ú

IB

� �ð
VB

ÿ C��ùIC

óVC ÿ E��ùIE ñVE

Figure 5.3: An npn transistor with DC voltages at each of its terminals, giving rise to DC currents as shown.
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By conservation of electric charge, we have that

IB + IC = IE . (5.1)

In order for the transistor not to overheat and melt, these currents must remain below some maximum
value. As IE is the largest, we usually use it to determine the maximum current in the transistor.

The transistor has one final very important property: it functions like a current-valve. The current
into the base, IB , controls how much current flows into the collector, IC . A small current into the base
lets a large current flow into the collector. This relationship is described in equation 5.2, where β is the
constant of proportionality. Typical values for β are from 50 to 300.

IC = βIB (5.2)

Thus, a small base current gives rise to a much larger collector current, and, from equation 5.2, a large
current flowing out of the emitter. This is what makes transistors useful. We can also define a parameter
α as in equation 5.3. In normal transistor operation, α is slightly smaller than 1.

IC = αIE (5.3)

It is easy to see that α and β are related as follows:

β =
α

1 − α
(5.4)

α =
β

1 + β
(5.5)

If α and β were constant, then we could design a circuit that would be able to provide a stable am-
plification of β. Unfortunately, this is not the case. For small emitter currents, the transistor can be
turning on, and the values of β and α can depend strongly on the emitter current, IE , with β doubling
as IE increases from a few tenths of a milliamp up to a few milliamps. For larger values of IE , β will
start to slowly fall off again, dropping by 10 to 20% as the current is increased to ∼ 100mA. While this
might have limited use, we would be much better served to design circuit whose performance does not
depend on any particular value of β. Rather, they should only require that β is large. As we proceed,
we will see how this comes about rather naturally.

Figure 5.4 shows an I–V curve for an npn transistor. We plot the collector current, IC , against the
potential difference between the collector and the emitter, VCE . The four curves on the plot correspond
to four different base currents, IB. For each curve, there is some region where the transistor is turning on
(the rapid rise of IC on the left-hand side of the figure), after which the current IC remains approximately
constant up to the Pmax line. The last feature on the graph is the maximum power, Pmax. In order
that the transistor not burn out 1, the power dissipated in the transistor,

P = IC · VCE ,

cannot exceed the maximum rated power for the transistor.

5.2.2 Bipolar Transistor Semiconductor Structure

As we have seen, a transistor is made from three layers of semiconductor material, either a p-layer
between two n-layers, or an n-layer between two p-layers. We will discuss the former case, the so-called
npn transistor. Figure 5.5 shows the structure of a typical bipolar npn transistor. The center layer is
known as the base and the two outer layers are known as the collector and the emitter. Under normal
operating conditions, the emitter emits electrons into the base. Most of these electrons diffuse through
the base and are collected by the collector. In order for this to happen the base-emitter junction is
forward-biased, while the base-collector junction is reverse-biased.

1There is some speculation that transistors actually function by magic. The small puff of smoke leaking out of the

transistor when the power rating is exceeded may well be the magic leaking out.
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Figure 5.4: A representation of the I–V curve of an npn transistor with β ∼ 200 and a maximum power of
100mW .
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Figure 5.5: The semiconductor structure of a bipolar transistor. The emitter and collector are connected
to n-type material while the base is connected to p-type material which is sandwiched between the n-type
layers.

We start with the base-emitter pn-junction. If this is forward-biased, then the majority carriers
from the emitter (electrons) move into the base, where they increase the concentration of minority
carriers. Similarly, the majority carriers in the base (holes) flow into the emitter, where they increase
the concentration of minority carriers. This results in a large current flow through the junction.

Next we examine the base-collector junction. This junction is reverse-biased, which from our un-
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derstanding of diodes implies that there is a small reverse current due to diffusion of minority carriers
in the base (electrons) into the collector. In the transistor, the injection of minority carriers into the
base at the emitter junction and the extraction of minority carriers at the collector side leads to a large
gradient in the concentration of minority carriers across the base. This causes these to diffuse from the
emitter side to the collector side, and then into the collector. This reverse current, which is small in the
diode, become large in the transistor. This is depicted in Figure 5.6.

vBE vCB

Emitter CollectorBase
n p n

Forward
Biased

Reverse
Biased

Diffusion CollectionInjection

flow
hole

electron
flow

Figure 5.6: Carrier flow in a normally biased bipolar junction transistor.

A bipolar junction transistor appears quite symmetrical, meaning that it is in principle possible to
reverse the roles of the collector and the emitter. Indeed, a transistor will operate in this reverse mode.
However, the emitter-base and collector-base junctions are generally manufactured differently to make
the forward-mode of operation work better than the reverse mode.

5.2.3 Transistor Operation

Consider an npn transistor that is biased in such a way to be in its normal operating range. The base
is at a potential about 0.65V higher than the emitter, while the collector is at an even higher potential.
The simple model which we have been using to describe the transistor states that the collector current,
IC , is β times the base current. Let us now take a closer look at the transistor behavior. In particular,
for specific values of base current (IB), supply voltage (VCC), and loads, what are the voltage drops
across the base-emitter and collector-emitter junctions, and what is the collector current (IC). These
are referred to as the operating point of the transistor.

We start with the input to the transistor, consisting of the current into the base, IB, and the base-
emitter voltage difference, VBE . The base-emitter junction looks like a forward-biased diode, so we
expect that the I-V curve should be that of a diode. This is shown in Figure 5.7. The nearly vertical
rise of the the I-V curve occurs at about 0.65V , but for small enough currents, BBE shrinks, and below
some voltage the diode turns off. This in turn shuts off the transistor. Let us now connect the base of
the transistor to a voltage source with voltage VS and some source impedance RS as shown in Figure 5.8.
If we look at the Kirchhoff voltage loop equation around the circuit, we have:

0 = Vs − IBRs − VBE . (5.6)

We can solve this for the current, IB as a function of the base-emitter voltage, VBE . This gives us:

IB =
Vs

Rs
− 1

Rs
· VBE
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VBE

IB

0 VS1 VS2 VS3 VS4 VS5
0

VS5/RS

VS4/RS

VS3/RS

VS2/RS

VS1/RS

Figure 5.7: The I-V curve for the input to an npn transistor. The nearly vertical rising curve is the familiar
diode curve. Overlaid on these are several I-V curves for a voltage source with internal resistance RS . The
intersections of these curves with the diode curve (circled) correspond to operating points of the transistor.

This I-V curve has been plotted in Figure 5.7 for a fixed Rs, but several values of the source voltage,
Vs. If we choose a particular source voltage, say Vs3 in the figure, then the intercept of the I-V line
and the diode I-V curve determines the particular value of IB and VBE . We note that if we choose Vs1,
then IB = 0 and the diode is turned off. For a particular Vs between Vs1 and Vs2 the diode turns on,
which turns the transistor on, and the voltage drop across the base-emitter junction is approximately
constant. �Vs

��� ��
Rs

ú
IB

� ��������������� ����
Figure 5.8: A voltage source Vs with source resistance Rs connected to the base of an npn transistor.

Now let us consider the output side of the transistor. Using the circuit shown in Figure 5.9. The
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Figure 5.9: A voltage VCC and load connected across the collector-emitter junction of our transistor. We
have the same source and source resistance as earlier connected across the base-emitter junction of the
transistor.

I-V curve for the output of a transistor is proportional to IB in the active part of the operation of
the transistor, as shown in Figure 5.10. This is represented by the series of flat lines, each of which
corresponds to a different input current. On the right, these curves eventually run into the power limit,
shown as the curved, dashed line. On the left-hand side, these curves all start from VCE = 0 and IC = 0.
They then quickly rise along a nearly universal curve up to the operating current. We next consider the
load lines as we did for the input circuit. If we take the Kirchhoff voltage loop around VCC , RL and
VCE in Figure 5.9,

0 = VCC − ICRL − VCE . (5.7)

This can be solved for the current to yield

IC =
VCC

RL
− 1

RL
· VCE (5.8)

This load line is drawn on Figure 5.10. As with the input, the intercept of the load line with the I-V
curve of the transistor yields the operating point of the transistor, (VCE , IC). In the case where the
load line intersects the flat part of the I-V curve, we are in the active region of the transistor. This is
typically where one wants to operate the transistor. If we happen to choose a point that is to the right
of the power curve, we are very likely to burn out the transistor. Finally, when the load line intersects
the rising part of the I-V curve on the left-hand side of the plot, we are in saturation. This voltage is
referred to as the saturation voltage, VCEsat. Because all I-V curves with larger IB also pass through the
same load point, the values of VCE and IC no longer change as the base current is increased. Rather,
they remain fixed at the saturation values, VCEsat and ICsat.

The above procedures provide a method of determining what the operating point is for a transistor
circuit. IB is determined on the input side, which selects a particular I-V curve on the output side. The
intercept of the load line with the I-V curve then yields VCE .

We can put much of this together by creating a transfer plot, a graph of VCE versus the source
voltage Vs. Such a plot is shown in Figure 5.11. For values of Vs smaller than the the nominal diode
voltage drop, 0.65V , the collector-emitter voltage is VCC . The transistor is off, and the emitter is at
ground. In the active region, the collector-emitter voltage falls from VCC to VCEsat over some finite
range of source voltage, after which it remains at VCEsat. The actual slope of the drop is

slope = −βRL

Rs
. (5.9)

To show this, consider equations 5.6 and 5.7. From the latter, we can write that

IBRS = Vs − VBE . (5.10)
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VCE

IC

VCC0

VCC/RL

0

Figure 5.10: The I-V curve for the output to an npn transistor. The family of roughly horizontal lines
correspond are the I-V of the output of the transistor for different values on the input voltage, IB. The
slanted line is the I-V curve for a voltage source VCC and load resistor RL. The circled intercepts indicate
operating points of the transistor for a given input current and supply parameters. In particular, the collector-
emitter voltage difference for the given output current.

However, in the active region, IB = IC/β, or

IC
β
RS = Vs − VBE .

From equation 5.8, we can substitute for IC to obtain:

1

β

RS

RL
[VCC − VCE ] = Vs − VBE .

This then yields

VCE = −βRL

RS
Vs +

[

βRL

RS
VBE + VCC

]

(5.11)

which gives the correct slope. If we note that, in the active region, VBE ≈ 0.65V , we can also rewrite
this as:

Vs = 0.65V +
RS

βRL
[VCC − VCE ] .
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When VCE = VCEsat, the source voltage at which the circuit saturates can be seen to be

Vssat = 0.65V +
RS

βRL
[VCC − VCEsat] . (5.12)

.

VCEsat

0.65V

VCC

Cutoff Saturation

Active
Region

Vs_sat
Vs

VCE

Figure 5.11: A transfer plot showing how VCE is related to Vs. When Vs is below the cutoff voltage of the
transistor, the transistor is off and VCE = VCC . The transistor then turns on and enters the active region,
where the slope is given by equation 5.9. When reaches Vs sat as given in equation 5.12, VCE = VCEsat. It
then remains at the saturation voltage as Vs is increased.

5.2.4 The Eber-Moll Model

In discussing transistors, we have been saying that the current into the base controls the current into
the collector:

IC = βIB

In fact, this is not quite right. It is actually better to think of the voltage difference between the base
and the emitter, VBE as the control parameter for the current out of the emitter rather than that into
the collector. A better parametrization for the current out of the emitter is then given by the Eber-Moll
equation:

IE = Is

[

eVBE/VT − 1
]

. (5.13)

The saturation current, IS , is a constant with a value of about 10−12A. The voltage VT is

VT = kBT/e (5.14)

where kB is the Boltzmann constant (kB = 8.617 × 10−5 eV K−1) and T is the temperature in kelvins.
The term kBT is the thermal energy associated with particles at temperature T . Considering charge
carriers of charge e, we can associate a thermal voltage, VT , with the thermal energy:

eVT = kBT (5.15)
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which then yields equation 5.14. At room temperature, we have:

VT =
(

8.617 × 10−5 eV/K
)

· (293.2K) / (e)

VT ≈ 25.3mV

We can rearrange equation 5.13 and solve for VBE ,

VBE = VT · ln
(

IE
IS

+ 1

)

(5.16)

which tells us how VBE changes with IE :

dVBE

dIE
= VT

(

1/IS
IE/IS + 1

)

dVBE

dIE
≈ VT /IE

This looks like an additional resistance, rE through which current coming out the emitter must flow.

rE = VT /IE (5.17)

At this point, it is convenient to note that IC ≈ IE , and rewrite equation 5.17 in terms of IC as

rE = VT /IC . (5.18)

At room temperature, we can write that

rE = (25.3mV ) /IC .

This resistance depends on the temperature of the transistor, because of VT , and on the current into
the collector, IC . For currents on the order of 10mA, we have rE on the order of Ohms.

5.2.5 Time-dependent Voltages

Previously, we looked at the static, or DC properties of a transistor. In addition to the three DC
voltages, let us now allow for time-dependent voltages at the three terminals to the transistor. We will
write the total voltage on each pin as vtot

b (t), vtot
c (t) and vtot

e (t). We will also observe that it is possible
to break the total voltages into a DC piece and a time-varying piece as follows.

vtot
b (t) = VB + vb(t)

vtot
c (t) = VC + vc(t)

vtot
e (t) = VE + ve(t)

If the time-dependent voltages are zero, we will refer to this as the quiescent operating point, or simply
the quiescent point. Our discussion will largely focus on the behavior of the purely time-varying parts
of the voltages: vb(t), vc(t) and ve(t), but we will see that setting up a reasonable quiescent point is
important in having a well-behaved transistor circuit.

In addition to voltage, we can also look at the current flowing along each leg of the transistor. As
above, we will define a DC part represented by a capital I, and a time-varying part represented by a
lower case i. As before, we can write the following.

itot
b (t) = IB + ib(t)

itot
c (t) = IC + ic(t)

itot
e (t) = IE + ie(t)
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In order for the transistor to be in its normal operating range, the total voltage on the inputs must
satisfy the previously established relations, namely, the base-emitter junction must be forward biased
and the base-collector junction must be reverse biased. In addition, in normal operation, we will have
approximately one diode drop across the base-emitter junction. This gives:

vtot
b (t) ∼ vtot

e (t) + 0.65V (5.19)

vtot
c (t) > vtot

b (t).

In fact, we can rewrite equation 5.19 as

(VB − VE) − (vb(t) − ve(t)) ∼ 0.65V , (5.20)

which can be decomposed into a time-independent and time-dependent part. Noting that the DC
voltages are both constant (that is what DC means), the only way that equation 5.20 can be satisfied
for all time is if we have that

(VB − VE) = 0.65V (5.21)

and that

ve(t) = vb(t) . (5.22)

What is significant here is that ve(t) is just a copy of vb(t). At first glance, this may seem fairly useless,
as a wire also has vo = vi, but as we continue we will see why this is useful. It is actually one of the
important features of the emitter-follower circuit, which will be discussed in the next section.

Finally, we should note that the internal resistance of the transistor given in equation 5.19 can affect
this latter relation. There will be a voltage drop across rE , but the size of such a drop depends on the
current, itot

e . Thus we may find that ve(t) is somewhat smaller than vb(t).

5.3 Simple Transistor Circuits

5.3.1 The Emitter-follower Circuit

Let us proceed with our discussion of transistor circuits by adding a resistor, RE , that connects the
emitter to ground. We will then connect an external DC voltage, VCC , to the collector. This is shown
in Figure 5.12. Also shown in the figure is that we have set a DC voltage at the base, VB , and then
added a time-varying voltage, vb(t), to this. The DC voltage at the emitter will be VE = VB − 0.65V .
With the resistor, RE , connected to ground, there must be a DC current, IE = VE/RE . From this, we
determine the DC (or average or steady-state) currents flowing in the transistor.

IE = (VB − 0.65V ) /RE

IC = IEβ/ (1 + β)

IB = IE/ (1 + β) (5.23)

We want to choose RE to make sure that we are far below the power dissipation limits of the transistor,
IC · VCC < Pmax. This will keep the transistor from burning out .

Let us now look at the equivalent circuit that vb(t) sees when it looks into the base of the transistor.
The equivalent impedance of the transistor will just be some resistance, Rin. In order to determine
what this is, let us start with the current and voltage at the emitter. If the emitter voltage changes
from its DC value, Ve, by some time-varying amount, ve(t), then the current IE will change by some
time-varying amount:

ie(t) = ve(t)/RE .
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Figure 5.12: A transistor hooked up as an emitter-follower. In such a circuit, ve(t) = vb(t). ZLD is a load
that could be hooked up to the output of the circuit.

However, we know that ve exactly tracks the time-varying voltage at the base, vb, as long as the transistor
stays in its normal operating state.

ve(t) = vb(t)

We can write ie in terms of ib as in equation 5.23, which gives us

(1 + β) ib = vb/RE .

This can be rewritten as:

vb

ib
= (1 + β)RE .

Which tells us that the equivalent input impedance, Zin, of the transistor is

Zin = (1 + β)RE . (5.24)

As β is on the order of 100, the input impedance of the transistor appears to be quite large. If we have
RE = 1 kΩ, then Zin ∼ 100 kΩ, which is hopefully large enough not to “load down” the circuit driving
the transistor.

In an application using this circuit, we would be driving some load, ZLD. To describe this, we need
to replace RE with the parallel combination of RE and ZLD:

Zin ∼ β (RE || ZLD) .

In our discussion of chaining circuits together, we found that having the input impedance of a circuit
very large is good because it does not load down the previous stage.

Now we need to check the output impedance of the emitter-follower circuit, Zout. Looking back into
the transistor through the emitter, we see the Thèvenin equivalent of the circuit driving the transistor,
but viewed through the transistor. In order to proceed, we have to assume that the driving circuit has
a resistance rs which gives rise to its output impedance. For many applications, rs might be something
like 50Ω. For a filter circuit, the output impedance can be just about anything.

As with determining the Thèvenin equivalents of DC circuits, we will want to determine the open-
circuit voltage and the short-circuit current. The ratio of these gives us Zout,

Zout =
voc

iss
.
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The open circuit voltage is just voc = ve. The (AC) short-circuit current is determined from the short-
circuit current into the base:

iE = (β + 1) iB .

Nominally, the current into the base is

ib =
vb

rs + Zin

ib =
vb

rs + (1 + β)RE
.

But if we short the output, then RE goes to zero and the short-circuit current into the base becomes

ib =
vb

rs
.

If we note that ve = vb, then the short-circuit current from the emitter will be

iss =
ve (1 + β)

rs
.

Putting all of this together, we find that the Thèvenin equivalent impedance as seen from the emitter,
Zout, will be:

Zout =
rs

1 + β
. (5.25)

The output impedance of the circuit is much smaller than the source impedance!
In other words, the emitter-follower is a circuit whose output is equal to the input, whose input

impedance is very large, and whose output impedance is very small. This is exactly the behavior that
we needed so that we could connect circuits together, but keep all the components of reasonable size.
It may be more useful to think of the emitter-follower as an impedance shifter. Figure 5.13 shows two
different representations of the emitter follower circuit.ð���� �����Rin ���ý ����ý����� ��Rout

�� �ò ð
vin

�� �ú
iin

�� �����Rin ���ÿ������ �ð �������� �ÿ������� �ò���/vin

����Rout

ø
iout

� �ò
voutý

Figure 5.13: Two versions of the equivalent circuit showing the input and output of an emitter-follower circuit.
The input impedance, Zin = (1 + β)RE , is typically very large. The output impedance, Zout = rs/(β + 1),
is typically very small. The diagram on the right emphasizes the fact that the emitter is common in both
circuits. It also shows that the output voltage source follows the input voltage.

We now understand the important properties of the emitter-follower. However, there are some
operating restrictions on the circuit. First, the lowest voltage to which the emitter can go is zero.
This means that if vtot

b (t) falls below 0.65V , the diode turns off and the output, vtot
e (t), goes to zero.

Figure 5.14 shows an example of this. There the maximum value of the emitter voltage is given by the
external power, VCC . If vtot

b becomes larger than VCC , the emitter voltage will just go to VCC . (When
vtot

b becomes larger than VCC , we are forward-biasing the BC junction and the transistor goes into a
mode known as saturation.) An example of this is shown in Figure 5.15.
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Figure 5.14: The dashed curve shows the input voltage into an emitter-follower circuit, while the solid curve
shows the output. Note that when the input falls below 0.65V , the transistor turns off and the output is
clipped at 0V .
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Figure 5.15: The dashed curve shows the input voltage into an emitter-follower circuit, while the solid curve
shows the output. Note that when the input goes above VCC , the output of the transistor saturates.

Example: Let us now design an emitter-follower circuit using a number of the tools that we have
developed in this course. The circuit that we are going to build is shown in Figure 5.16. The power-
supply voltage, VCC , serves two purposes in this circuit. It sets the voltage at the collector, but
also, through the R1-R2 voltage divider, sets the DC voltage level at the base. We have two blocking
capacitors, C1 and C2, the purpose of which is to block the DC voltages from vin and vo. In both cases,
they are part of a high-pass filter circuit. We will assume that VCC = 12V and that the maximum
current that the transistor can handle is 10mA.

Let us start with the emitter voltage. Because vo = vin, we would like to allow for the maximum
possible voltage swing in vo. If we choose the nominal DC level at the emitter to be 1

2 VCC , then vo

can swing between − 1
2 VCC and 1

2 VCC . With VE = 1
2 VCC , we can choose the value of RE to limit

the maximum current through the transistor. If we do not want to risk burning out our transistor, we
should set the nominal value of IE to be about 10% of the maximum current, or 1mA. From this we
get that

RE = VE/IE

RE = (6V ) / (1mA)
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or

RE = 6 kΩ

In order to have the nominal VE = 1
2 VCC , we must set VB = 0.65V + 1

2 VCC . Using our voltage
divider equation, we have

0.65V +
1

2
VCC =

R2

R1 +R2
VCC .

This can be solved to yield an expression which relates R1 and R2.

R1 =
(VCC/2) − 0.65V

(VCC/2) + 0.65V
·R2

R1 = 0.80 ·R2 (5.26)

In order to set the exact values of R1 and R2, we need to consider the input impedance of the
transistor, Rin = βRE , and we need to compare it to the Thèvenin equivalent resistance of the voltage
divider, or R1 || R2. In order for the transistor not to load down the voltage divider, we require that

βRE >> R1 || R2

Using equation 5.26 and approximating β as 100, we can write this as

(100) · (6 kΩ) >>
(0.8R2) (R2)

(0.8R2) + (R2)

which yields

R2 << 1350 kΩ.

Taking “much less” to mean a factor of 100, we would get the following values for all the resistors in
the circuit:

RE = 6 kΩ ,

R1 = 10.8 kΩ and

R2 = 13.5 kΩ .

���� �ÿ��� ��
C1

ðò�
rs

� ���/vin ��ñ ���R1

��ÿóVCC ���R2 ��ÿý
����� ������ÿ�RE����� ���� ��C2

� �ò
vo

Figure 5.16: An example emitter-follower circuit as described in the text.
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Now let us examine the capacitors. Remember that they are intended to form high-pass filters that
let through all frequencies larger than some low value. In this example, let us assume that f = 10Hz.
We next need to determine what resistance to include. To do this, we need to realize that for an AC
voltage, the DC voltage source, VCC , can also serve as a sink or ground. This means that as far as
our high-pass filter is concerned, the equivalent circuit is shown in Figure 5.17(a). Figure 5.17(b) shows
the explicit high-pass filter with capacitance C1 and resistance of R1 || R2 || βRE . This gives the
characteristic frequency for the circuit:

ωRC =
1

(R1 || R2 || βRE) · C1

Expanding this, we get

2π (10Hz) >
1

(13.5 kΩ || 10.8 kΩ || 600 kΩ) · C1

0.016 s < (5.9 kΩ) · C1

or

C1 > 2.7µF .

Finally, we need to determine the value of C2. This should also form a high-pass filter with the same� ��óVCC��� �ÿ���� �ÿ���� ��
C1

ð
vin

(a) �����R2 ��ÿ�����R1 ����������� ���ÿ�RE ����� �òvoý �
C1

��� �ð
vin

(b) ���� �ÿ� �ò
vo�����R1 || R2 || βRE ý

Figure 5.17: The AC equivalent circuit showing the input to the emitter-follower circuit of Figure 5.16. The
DC voltage source, VCC , serves as a sink or ground for an AC input voltage, vin. Circuit (a) shows the
transistor explicitly, while circuit (b) shows the equivalent high-pass filter.

frequency as before, ω = 62.8 s−1. As before, we need to identify which resistor completes the high-pass
filter. This resistance needs to be to the right of the capacitor. The only resistance that this can be is
the load connected to the output of the circuit (Figure 5.18). We know that the output impedance of
the circuit is roughly Rout = (R1 || R2) /β, so choosing a factor of 100 for “much larger”, we get that
the load must be larger than R1 || R2, or RLD ≈ 6. kΩ. This then gives:

62.8 s−1 >
1

RLD · C2

0.016 s < (1.2 kΩ) · C2

C2 > 2.7µF

However, this may not tell us everything. If the source impedance feeding our circuit, rs, is smaller
than R1 || R2, then it is possible to safely drive an even larger load, or smaller resistance. For example,
if rs = 50Ω, then the load we can drive is also 50Ω. Replacing the 6. kΩ above with rs, we would find
that C2 > 320µF . The bottom line is that this capacitor’s value is set by the minimum load that we
expect to drive, which itself may depend on the input to the circuit, and not the circuit itself.
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Figure 5.18: The output capacitor and the load resistance attached to the emitter-follower circuit.

5.3.2 The Common Emitter Amplifier

In the last section, we examined a circuit that changed input and output impedance, but whose output
signal was just a copy of the input signal. We now want to examine circuits that amplify the input
signal, thereby creating an output voltage that is larger than the input voltage. A simple way to do this
is the common-emitter, or inverting amplifier. Such a circuit is shown in Figure 5.19, and we will now
examine the normal operation of this amplifier circuit.

�� �ð
VB ÿ���RE ýVE

ÿ���RC

��óVCC �� �ò
VC

Figure 5.19: The common-emitter amplifier circuit. A supply voltage, VCC , is connected to the collector.
The time-varying voltage at the collector is related to that at the base by vc(t) = −(RC/RE)vb(t).

A supply voltage, VCC , is connected through a resistor, RC , to the collector of the transistor. In
addition, the output of the circuit is taken directly from the collector. As with the emitter-follower, a
resistance RE connects the emitter to ground. In order for the circuit to work, the transistor needs to
be in its normal operating state: VC > VB and VB − VE = 0.65V , with VE > 0.

The DC voltage, VB, at the base leads to a DC voltage at the emitter of VE = VB − 0.65V . The
supply voltage is connected through the resistor RC . If a current, IC , flows through the resistor, then
the collector voltage will be

VC = VCC − ICRC . (5.27)

As with the emitter-follower, the current that flows from the emitter is IE = VE/RE . Let us now
examine the effect of time-varying voltages on the circuit.

Consider a time-varying input voltage vb(t) connected to the base. From our discussion of the
emitter-follower, we know that ve(t) = vb(t). We also know that the time-varying current through RE

is given as

ie(t) = ve(t)/RE ,
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which can be rewritten in terms of vb(t) as:

ie(t) = vb(t)/RE .

The current into the collector is approximately equal to the current out of the emitter, ic(t) ≈ ie(t). By
looking how equation 5.27 behaves when vc is varied, we obtain:

vc(t) = −RC · ic(t),

that is, the time-varying collector and the base voltages are related by

vc(t) = −RC

RE
vb(t). (5.28)

The time-varying voltage at the collector is the inverse of that at the base, but multiplied by the ratio
RC/RE . For RC = 10 ·RE , the output would have an amplitude 10 times larger than the input2.

The typical application for such a circuit is to amplify a small signal. By properly choosing RE and
RC , the amplification can be tuned to the desired value. In such a circuit, we want the largest variation
possible for vc, which means that VC should be about VCC/2. This also means that we need to set VE

as close to zero as possible to allow vc the largest range possible. This then defines the optimal value of
VB , which tends to be small—not much larger than a single diode drop.

Example: Let us design an amplifier circuit with a gain of −10. We will use a supply voltage of
VCC = 12V , and are told that the maximum input signal will have an amplitude of 0.5V . We want
vtot

b (t) to be no lower than 0.65V so that the transistor does not shut off. This gives us a nominal value
of VB = 1.15V , and of VE = .50V .

Figure 5.20 shows the maximum sinusoidal oscillations for vb and ve. Because we want vc to be −10
times vb, we find that it has an amplitude of 5V . We also know that vtot

c (t) must remain larger than
vtot

b (t) for the transistor to stay on. This means that vtot
c (t) must never be less than 1.65V , which allows

us to set the nominal value of the collector voltage:

VC =

[

1.65 +
1

2
(12 − 1.65)

]

V,

or

VC = 6.825V .

This leads to the output, vc(t), shown in Figure 5.20.

Input and Output Impedance

We should now examine the input and output impedance of the common-emitter amplifier, so the
analysis that we carried out for the input to the emitter-follower is still valid for the inverting amplifier.
The input impedance is

Zin = βRE . (5.29)

We can obtain the output impedance from equation 5.27. If we differentiate this with respect to the
current, IC , we get

dVC

dIC
= −RC ,

2For fans of the movie Spinal Tap, one can change RC to be eleven times RE . Thus an amplifier that goes to 11 can

be built.
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Figure 5.20: Optimized voltage setting for the inverting amplifier described in the example.

so the output impedance is just

Zout = RC . (5.30)

Figure 5.21 shows the equivalent input and output circuits for the inverting amplifier. While we can
arrange that β ·RE is reasonably large, we may be limited to a large value of RC , which might lead to
a larger output impedance than we desire.ð

vin
�� �ú

iin

�� �����βRE ���ÿ������ �ð �������� �ÿ������� �ò���/−RC

RE
vin

����RC

ø
iout

� �ò
voutý

Figure 5.21: The input and output of the common-emitter amplifier. The input impedance is βRE and the
output impedance is RC .

Example: Let us now carry out the design of the inverting-amplifier circuit shown in Figure 5.22. As
we did with the emitter-follower, we use a voltage divider to set the nominal level of VB , and then use
capacitors to form high-pass filters on both the input and output of the circuit. We will use the same
VCC = 12V as above, and design an amplifier with a gain of −10 for a maximum input signal amplitude
of 0.5V . We can take the nominal voltage levels that we found in the previous example as our starting
point:

VB = 1.15V

VE = 0.50V

VC = 6.85V
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Figure 5.22: An example inverting-amplifier circuit. The output voltage is related to the input voltage by
vo(t) = −RC

RE
· vin(t).

We will start by choosing RE such that IE is limited to 1mA, a number that we will take as a safe
operating point of the transistor. The maximum value of VE + vE will be 1.0V , so we want

1mA = (1.0V ) /RE

RE = 1 kΩ .

From this, we get that RC = 10 kΩ. At the quiescent point, VE = 0.5V , which gives that IE = 0.5mA.
Then

VC = 12.0V − 0.5mA · 10 kΩ

VC = 7.0V .

We are not able to quite set VC at 6.85V , but 7.00V should be good enough. Next, we need to choose
R1 and R2 to give us 1.15V at VB. We can find the ratio of the two that gives us the right voltage:

1.15V =
R2

R1 +R2
· 12V

0.0958 ·R1 = 0.904 ·R2

R1 = 9.44 ·R2 .

In order to proceed, we need to make sure that R1 || R2 is small in comparison to βRE ≈ 100 kΩ. To
do this, we would like to choose R1 || R2 ≈ 1 kΩ. Putting this all together, we find that

R1 = 1.11 kΩ

R2 = 117Ω .

As we did with the emitter-follower, we will insert capacitors C1 and C2 into the circuit to “block” DC
voltages. The same logic applies as before, and the equivalent high-pass filters for both the input and
the output are shown in Figure 5.23. On the input side, the parallel combination is dominated by the
smallest of the three resistors, namely R2, while on the output side, we need to consider the load, RLD,
that we will be driving with this circuit. If we want to set the frequency to be fc = 5Hz, then we have
ωc = 31.4 s−1, which should equal 1/ (R · C). On the input side, we have

31.4 s−1 ≤ 1

117Ω · C1
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which yields that

C1 ≥ 270µF.

On the output side, we do not necessarily know the load, but it probably should be at least 10 times
larger than RC . Assuming this, we get

31.4 s−1 ≤ 1

10 kΩ · C2

so that

C2 ≥ 3.2µF.

In the following, we list the component values that we would like for this circuit. However, we often
may not be able to get those exact values. We also list possible compromise values that are probably
easily obtained. If we do make these changes, we will have to ask what effects they will have on our
circuit. We hope that they are negligible, and leave this as an exercise for the reader.

Component Desired Value Obtainable Value
RE 1 kΩ 1 kΩ
RC 10 kΩ 10 kΩ
R1 1.1 kΩ 1 kΩ
R2 117Ω 100Ω
C1 270µF 330µF
C2 3.2µF 3.3µF�

C1

��� �ð
vin

���� �ÿ� �ò
vo�����R1 || R2 || βRE ý �

C2

� �ÿ�����RLD ý� �ð
vo

� �ò
Figure 5.23: The equivalent high-pass filters in the input (left) and the output (right) circuits.

Chaining Together Transistor Circuits

In the previous sections, we have looked at two types of transistor circuits: the emitter-follower circuit
and the common-emitter amplifier circuit. Both of these circuits have large input impedance, but only
the former is guaranteed to have a small output impedance. By chaining such circuits together, we can
build circuits with large input impedance and small output impedance. A feature that we have found
to be quite useful.

As an example of this, let us consider the common-emitter amplifier that we discussed in section 5.3.2.
We found that while the input impedance of the circuit was large, (Zin = βRE from equation 5.29).
The output impedance also tended to be large, (Zout = RC from equation 5.30). In order to be able
to do additional processing on the output of such an amplifier, it would be useful to have a smaller
output impedance. This can be accomplished by attaching an emitter-follower circuit to the output of
the amplifier. Such a combined circuit is shown in Figure 5.24. The output impedance of this circuit
will be given approximately as:

Zout ≈ R3

β
||R4

β
||RC

β
,
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which is approximately given by the term for the smallest of the three resistors.
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Figure 5.24: A common-emitter amplifier followed by an emitter-follower circuit.

5.3.3 High-Gain Common-Emitter Amplifiers

In the last section, we looked in detail at the common-emitter amplifier, whose gain is found to be
G = −RC/RE . We would now like to explore the consequences of making this gain large—much larger
than the nominal factor of ten that we had in the last section. There are two obvious ways to do
this: we can increase RC or we can decrease RE . As the output impedance of the circuit is given
as Zout = RC , increasing RC immediately leads to a much larger output impedance. Large output
impedances are typically not desirable characteristics of circuits. The alternative of decreasing RE is
the typical approach to increasing the gain of the amplifier. However, this can also affect the performance
of the amplifier.

�� �ð
VB ÿ�re ÿ�RE ýVE�� �òÿ�

RC

óVCC �� �ò
VC

Figure 5.25: The inverting-amplifier circuit. The gain of the amplifier is G = −RC/ (RE + re).

In this section, we will examine the consequences of decreasing RE . We will find that we can indeed
get large gains, but the gain may no longer be linear in input voltages. Before proceeding, we should
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recall the results of the Eber-Moll equation (5.19). In particular, the emitter behaves as if there is a
small resistance, rE , in series with the external resistance, RE (see Figure 5.25). In equation 5.19 we
saw that rE is dependent on both the temperature of the transistor and the total current flowing into
the collector, itot

c . We explicitly summarize that dependence in equation 5.31.

rE =
kBT/e

itot
c

. (5.31)

At room temperature ( 68◦ F ), T = 293.2K, we can simplify this to yield

rE =
25.3mV

itot
c

. (5.32)

Grounded-Emitter Amplifier

In order to increase the gain of the circuit, we will now decrease RE . In fact, because rE is finite, we
can set RE = 0. Our gain then becomes G = −RC/rE , which can be quite high.

For a current itot
c = 1mA, and RC = 10 kΩ, we have a nominal gain of −400. For a 10mA current,

the gain can be 10 times larger. Such a circuit is known as a grounded-emitter amplifier.
Let us now look at this in a bit more detail. As before, there will be DC voltages on the terminals

of the transistor, VB, VC and VE . There will also be DC currents flowing and out of the transistor, IB
and IC in and IE out. If we consider the case where we only have these DC voltages and currents, then
we find the nominal value of the internal resistance, ro

E , from equation 5.32:

ro
E =

25.3mV

IC
(5.33)

We can now add a time-dependent input voltage, vb(t) to VB . This will lead to time-dependent
voltages at the emitter and collector:

ve(t) = vb(t)

vc(t) = − RC

rE(t)
vb(t) . (5.34)

The resistance, rE(t), can be written as

rE(t) = ro
E

[

IC
IC + ic(t)

]

.

Using the fact that vc(t) = −ic(t)RC , we can expand equation 5.34 as

− ic(t)

vb(t)
=

−1

ro
E

[

IC
IC + ic(t)

]

.

We can solve this for ic(t) to yield

ic(t) =

[

vb(t)IC
ro
E

]

·
[

1

IC − vb(t)/ro
E

]

which can be rewritten to yield the gain of the circuit as a function of the input voltage, vb(t):

G = Go ·
[

1

1 − vb(t)/25.3mV

]

(5.35)

where Go = −RC

ro
E

. Here we assume the temperature of the transistor remains constant. Such a function

is plotted in Figure 5.26 for values of vb between −25mV and 25mV . This function is both nonlinear
and asymmetric about vb = 0.
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Figure 5.26: The negative of the gain as a function of the input voltage to the emitter-grounded amplifier.
The expected or nominal gain is indicated at 0V input voltage. As the input goes to the maximum allowed
voltage, the magnitude of the gain gets very large.

Let us now consider some numerical examples. We will assume that the nominal gain Go = −400 as
expected for IC = 1mA and RC = 10 kΩ. The time varying input voltage will be taken as

vb(t) = 25mV cos (ωt) .

From this, we nominally expect an output voltage

vc(t) = −10V cos (ωt) .

The true gain as a function of vb is shown in Figure 5.26. Because of the large variation in gain as a
function of vb, this is not a good design for achieving large amplifications. Figure 5.27 shows the output
voltage, vc, as a function of the input voltage, vb. The dashed line is what we would like for a good
amplifier; the solid line is what this circuit delivers. Figure 5.28 shows the result of feeding two triangle
waves, of different amplitudes, into the circuit. The dashed line shows the desired triangle wave output,
while the solid curve shows what actually comes out of the circuit.

Not only is the gain of this circuit very nonlinear, but the input impedance can also change signifi-
cantly. In the above example, we would find that

Zin = (1 + β)rE . (5.36)

For typical values of rE = 25Ω and β = 100, this yields that Zin ∼ 2.5 kΩ. This may already be
uncomfortably small for some purposes. However, the large variations in rE as a function of itC will lead
to large variations in the input impedance. This is clearly not a desirable feature.

Lastly, while we have assumed that the temperature of the transistor is constant, in fact this may
not be the case. The power dissipated in the transistor depends on the current. In equation 5.31, we
see that the value of rE varies linearly with T . If the transistor temperature increases by about 30◦C,
rE will increase by about 10%.

The reason the gain is so nonlinear is that rE changes by so much. This, in turn, is because IC
and ic(t) are of similar size, which leads to large variations in itot

c (t). In the common-emitter amplifier
in section 5.3.2, this was limited by choosing values of RE that were large compared to rE . While the
changes in rE were large, the changes in RE + rE were very small, and the amplifier had a very linear
gain. For very small (relative to 25mV ) signals, this circuit could provide an approximately linear
response, but even though it is sometimes used, it is generally considered a poor circuit design.
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Figure 5.27: The output voltage, vc as a function of the input voltage, vb. The dashed line is what is
expected for the nominal gain. The plateau for large input voltage corresponds to the output saturating and
reaching the supply voltage.

Bypassed Common-Emitter Amplifier

The problems that we encountered in the grounded design traced back to the fact that changes in itot
c (t)

led to large changes in rE . If we could set some finite level for IE which did not depend on the exact
value of rE , we could improve the situation. This is the idea behind the bypassed common-emitter
amplifier. Rather than shorting the emitter directly to ground, we can modify the circuit slightly, to
that shown in Figure 5.29.

In this circuit, we still have an emitter resistor, RE , which is chosen to be about 1
10RC . However,

we bypass the emitter resistor, RE , with a capacitor, CE . The value of CE is chosen such that the
magnitude of the impedance, ZC , for all interesting frequencies is much smaller than the nominal value
of rE . The capacitor provides an AC ground, while the resistor provides the DC connection to ground.
If a total current itot

e flows out of the emitter, then IE flows through the resistor to ground and ie(t)
flows through the capacitor to ground. For the AC signal, the gain is again given by G = −RC/rE .
However, unlike the previous example, the variations in the possible values of rE are much less extreme
because there is a large DC current, IC , to which we add the AC current, ic(t). Unfortunately, as we
will see in the following, this circuit still suffers from a non-linear gain, but because we have moved VE

away from ground, we do not have the transistor in a situation where it is very close to the on/off point.

To understand the behavior of this circuit, we again choose some specific values. We set VCC = 20V ,
RC = 10 kΩ and RE = 1 kΩ. We also want to set the nominal DC level at the emitter to be 1V . From
this, we get that IC ≈ IE = 1mA and the nominal collector voltage is VC = 10V . Next, we want to
choose a capacitor, CE whose impedance is very small compared to rE for all frequencies of interest.
If we take a cutoff frequency of ω = 10 s−1, then CE > 1/ (ωrE). For a nominal re = 25Ω, we choose
CE > 4mF . The nominal AC gain is then G = −RC/rE ≈ −400, while for very low frequencies, it will
be −RC/RE = −10.

However, now let us look at a little more detail. If we would like to amplify a 25mV signal, vb(t),
then we have that ve(t) follows vb, and the current, ie(t), will just be ve(t)/rE . Putting in the numbers,
we find the amplitude of ie(t) is also 1mA. This will lead to exactly the same problems that we saw
before. However, for signals much smaller than 25mV , this amplifier will have much better behavior
than the simple grounded version.
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Figure 5.28: The response of the grounded-emitter amplifier to triangle wave inputs. The expected triangle
waves are shown as dashed lines while actual responses are shown as solid lines.
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Figure 5.29: A bypassed common-emitter amplifier circuit.
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A Partially-Bypassed Amplifier

Figure 5.30 shows a partially-bypassed common-emitter amplifier circuit. We have put the resistor RB

in series with the capacitor CE , which, according to our earlier analysis, will give us a gain of

G = −RC

RB

in the high-frequency region, while the gain will be −RC/RE in the low-frequency region. If we choose
RB large relative to rE , but smaller than RE , we can produce a much more linear response with a higher
gain.
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Figure 5.30: A partially-bypassed common-emitter amplifier.

5.4 Field Effect Transistors

In addition to the bipolar transistors that we discussed in the earlier part of this chapter, other types of
transistors are also in common use. In this section, we will discuss a class of transistors known as field
effect transistors, or simply FETs. As the name implies, their output is controlled by the strength of
an electric field inside the transistor.

In fact, FETs are much more common in the semiconductor industry than bipolar transistors3. One
advantage is that they have significantly higher input impedance than the bipolar transistor, which in
turn means that the current drawn at the input to the transistor is smaller.

All FETs rely on the behavior of moving charges in semiconductors. The conductance of a semicon-
ductor material can be found by combining equations 4.4 and 4.5 into a single expression. If we limit
ourselves to an n-type semiconductor with only majority carriers, then the conductance is

G = qµen

(

A

L

)

. (5.37)

In order to to control the current flow in a semiconductor using the relation

I = G · V , (5.38)

we need to be able to control the value of conductance. In equation 5.37, we see that this can be
accomplished by varying the mobility, µe, the concentration of charge carriers, n, or the geometry of

3It is interesting to note that the first patent for a field effect transistor was awarded to Julius Edgar Lilienfeld in 1926,

nearly twenty years earlier than the bipolar transistor was invented. See U.S. Patent numbers 1,745,175 and 1,900,018.
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the conductor, A/L. Field effect transistors use the electric field in the semiconductor to change the
geometry of the conducting path, and hence the conductance.

Like bipolar transistors, field effect transistors have three terminals, though they are named differ-
ently. Figure 5.31 shows the symbol for an n-channel (a) and p-channel (b) FET. The three terminals
are known as the gate (G), source (S), and drain (D). The potential difference between the gate and the
source, VGS , is used to control the current flowing between the drain and the source, ID. For certain
regions of operation, we will find that ID does not depend on the voltage between the drain and source,
VDS—it only depends on VGS . Hence, we will arrive at an I-V curve similar to that of the bipolar
transistor.

G

D

S S

D

G

n−channel p−channel

(a) (b)

Figure 5.31: The symbol for an n-channel (a) and p-channel (b) field effect transistor. The three terminals
are the gate (G), the source (S) and the drain (D). Control over the conductance of the FET is achieved by
changing the voltage difference between the gate and the source.

5.4.1 Junction Field Effect Transistors

The junction field effect transistor, or JFET, is based on a single semiconductor junction. Figure 5.32
shows a cross-sectional slice of an n-channel JFET. The source and drain are connected to the ends of the
same n-type semiconductor. A p-type semiconductor, to which the gate is connected, is deposited on top
the n-channel. If the potential difference between the gate and the sink is zero, then the conductance,
G, is a maximum value, and the relation between the current ID and the drain-source voltage, VDS , is
given by equation 5.38.

n

pSource Drain

Gate

Figure 5.32: A junction field effect transistor (JFET). Current normally flows through the n-type semicon-
ductor between the drain and the source in the conduction channel. The gate is a p-type semiconductor into
which electrons from the conduction channel can diffuse.

However, the junction field effect transistor uses the voltage difference, VGS , to control the conduc-
tance, G. If we reverses-bias the junction such that the gate is at a lower potential than the source,
then the electrons in the n-channel will be pulled into the p-type semiconductor, thus depleting the
conductors in the channel. This depletion region will decrease the cross-sectional area of the conduction
path, and, based on equation 5.37, will decrease G. As VGS becomes more negative, we will eventually
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reach a point where the n-channel is entirely depleted and the conduction will go to zero. The voltage
at which this happens is known as the pinch voltage, VP (note that in an n-channel JFET, VP is always
negative). When VGS ≤ VP , then G = 0. The pinching off of the conduction channel is shown in Fig-
ure 5.33(a). Similarly, Figure 5.33(b) shows the I-V curves for three different values of VGS : maximum
conduction at VGS = 0, some intermediate value when VGS is some fraction f of the pinch-voltage, and
finally G = 0 when VGS ≤ VP .
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Figure 5.33: (a) A biased JFET. In the upper figure, there is no potential difference between the gate and the
source. The conduction channel has its maximum width. The center figure has the gate-source bias at some
fraction of the pinch voltage. The conduction channel is narrower. In the bottom picture, the gate-source
voltage is equal to the pinch voltage and the conduction channel is closed. (b) I-V curve for the JFET whose
gate is at the same potential as the source.

As a note, if we forward-bias the junction with VGS , the conduction does not increase beyond what
it is at VGS = 0 as there is no easy way to increase the concentration of conductors in the n-channel
beyond its unbiased value. Hence VGS for a JFET ranges between VP and 0 (recall that VP is negative).

In order to have current flow from the drain to the source, we need to apply a voltage, VDS . For
VDS smaller than the magnitude of the pinch voltage, the previous description is accurate. However, as
VDS approaches | VP |, the biasing causes the n-channel to start to pinch off at near the drain. When
VDS reaches | VP |, the n-channel will completely pinch off as shown in Figure 5.34. However, rather
than the current going to zero, we find that ID becomes fixed at a constant value. In fact, this value
is controlled by the gate-source voltage, VGS , as shown in Figure 5.35. We have effectively achieved
the same I-V curve that we had for a junction bipolar transistor. The maximum current in the JFET
occurs when VGS = 0, and is known as IDSS . This value is typically quoted on the specification sheets
for the JFET.

Though we will not quantitatively explain the flattening out of the I-V curve of the JFET, we can
at least understand it qualitatively. While the reverse bias of the junction has depleted all the mobile
charge carriers in the pinched-off region, it does not prevent charge carriers from flowing across the
“pinch” as long as there is a sufficiently large potential difference. As such, current can continue to flow
through the channel. It becomes constant because the increased potential between the drain and the
source nearly cancels the increased resistance due to the growing pinched region. If RDS = αR0 and
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Figure 5.34: A biased JFET with a fixed gate-source voltage that is some fraction of the pinch voltage. The
progressively larger pinched-off regions correspond to increasing values of the drain-source voltage. Eventually
this gets large enough to pinch off the conduction channel.

VGS = fVP

VGS =0

VGS=VP

VDS

ID

DSSI

−VP

Figure 5.35: The I-V curve for a JFET. Once VDS becomes larger than VP , the current ID becomes
independent of VDS . However, it can still be controlled by VGS . The constant current for VGS = 0 is known
as IDSS .

VDS = αV0, then the current, given as VDS/RDS , is just a constant. We simply state that this is what
happens, without further justification. In Figure 5.36 are shown the drain current, ID as a function
of the gate-source voltage, VGS . For sufficiently large VGS , ID is proportional to VGS . It is in this
proportional region that ID is independent of the drain-source voltage.

Finally, we note that the bipolar junction transistor worked with a forward-biased pn-junction, while
the JFET works with a reverse-biased pn-junction. According to the characteristic diode curve shown
in Figure 4.17, this means that the input current drawn by the JFET will be significantly smaller than
than for the bipolar transistor. Hence, the input impedance of the JFET will be much larger. However,
because we have a reverse-biased junction, we know that we eventually reach the breakdown voltage of
the junction, at which point significant current will begin to flow into the gate. This breakdown limits
the maximum value of VDS in the JFET.

Example: As with the bipolar transistor, a follower circuit can be built using a JFET. Such a circuit
is shown in Figure 5.37. An external supply voltage, VDD, is connected to the drain, and the source
is connected to ground via a resistor, RS . While we will not show it, the output impedance of this
circuit tends be larger for the JFET circuit than for the bipolar transistor. This arises because the
resistance corresponding to rE in the bipolar transistor is larger in the JFET, and this value sets the
output impedance. Values of a few hundred ohms are typical.
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VGS

ID

0
0

VP

Figure 5.36: The transfer curve for a JFET. The drain current, ID as a function of the gate-source voltage,
VGS . For large enough VGS , ID is proportional to VGS as shown by the dashed line in the figure. � �ð

vin ÿ���RS ý
���óVDD �� �ò

vout

Figure 5.37: A follower circuit built using an n-channel JFET. The time-varying output voltage will follow
the time-varying input voltage.

Example: We can also build an amplifier circuit using a JFET. This is shown in Figure 5.38. As
with the follower circuit, the internal resistance of the n-channel will cause the gain of this circuit to be
smaller than the corresponding gain of the bipolar transistor circuit.

5.4.2 Metal-Oxide-Semiconductor Field Effect Transistors

Similar to the JFET is the metal-oxide-semiconductor field effect transistor, the MOSFET. In this
device, the p-type semiconductor is replaced with a thin insulating layer. On top of this layer is a thin
metal layer that is connected to the gate. It may also be true that different n-type semiconductors
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Figure 5.38: An inverting amplifier built using an n-channel JFET.

are used near the drain and source than in the conduction channel. Figure 5.39 shows a side view of
a typical MOSFET device. The symbol for the MOSFET (Figure 5.40) is slightly different from that
for the JFET (Figure 5.31). In particular, many MOSFETs have a fourth connection to the bulk, or
substrate, material in the transistor. This is indicated as B in Figure 5.40. However, many MOSFETs
have an internal connection between B and S which might also be indicated on the symbol.
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Figure 5.39: A metal-oxide-semiconductor field effect transistor (MOSFET). The two two n-regions labeled
n1 have a larger concentration of charge carriers than the region labeled n2. The p-region only serves as a
mechanical substrate. A metal electrode is separated by a thin insulator from the conduction channel, n2,
which functions as a capacitor. When the gate is at lower voltage than the source, the capacitor creates a net
positive charge along the insulator-n2 junction. This removes negative charge carriers from the conduction
channel.

The difference between a JFET and a MOSFET is that when a voltage is applied between the gate
and the source, VGS , the transistor behaves as if the metal plate and the n-channel are the two sides
of a capacitor. When the source is at a higher potential than the gate (VGS < 0) the same description
that we had for the JFET applies. The is known as the depletion mode. However, in the case where the
gate is at higher potential, then we can actually inject additional charge carriers into the conducting
channel. The is known as enhancement mode.

We will now introduce without proof two equations which describe the I-V curve of the MOSFET.
Equation 5.39 describes the region where the conduction channel has not been pinched off, while equa-
tion 5.40 describes the transistor behavior when the channel has been pinched off.

iD = A0 ·
[

(vGS − VP ) · vDS − 1

2
v2

DS

]

(5.39)

iD =
1

2
A0 (vGS − VP )

2
(5.40)
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Figure 5.40: The symbols for n- and p-channel MOSFETs. The fourth connection indicated in the figures
(B) connects to the bulk substrate of the transistor. This is often internally connected to the source terminal
of the transistor.
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Figure 5.41: The I-V curve for a MOSFET. The horizontal dashed line indicates where VGS = 0. Above this
line, the transistor is in the enhancement regime. Below the line, it is in the depletion regime. The curved
line labeled Pmax indicates the maximum power dissipation of the transistor.

In the depletion regime, equation 5.39 is valid when vDS ≤ (vGS−VP ) and (vGS−VP ) ≥ 0. Equation 5.40
is valid for vDS > (vGS − VP ) and (vGS − VP ) ≥ 0. When the MOSFET is in the enhancement regime,
the pinch voltage is replaced with a threshold voltage VT . The same equations and limits apply after
this substitution.

Finally, we consider the maximum power of the MOSFET. This is indicated by the Pmax curve in
Figure 5.41. The maximum power curves indicate when breakdown begins. Either for the pn-junction
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in a JFET, or the insulating layer in the MOSFET. Unfortunately, breakdown of the insulating layer
in a MOSFET usually results in permanent damage, it not destruction of the insulating layer. Related
to this is the extremely large input impedance at the gate of a MOSFET. This can be damaged by the
accumulation of static charge. When MOSFETs are not in use, the leads should be shorted together
and the the device only handled by its case. Similarly, inserting a MOSFET into a powered circuit is
considered a “bad idea”.
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Problems

1. An npn transistor will be used in a circuit where its nominal base voltage is VB = 2.0V . If a
resistor RE connects the emitter to ground, what should be chosen for the value of RE if the
nominal value of the current IE should be 10mA?

2. The transistor in problem 1 is connected to an external supply of voltage VC = 10V . How much
power is dissipated in the transistor at its normal operating point?

3. An npn transistor is operating with a nominal base current of IB = 10µA and a nominal emitter
current of IE = 1mA. What are β and α for the transistor?

4. An npn transistor has a nominal operating point of IC = 100mA. What is the value of internal
emitter resistance rE at room temperature? What is rE if the transistor heats up to 50◦C?

5. An npn transistor has a nominal operating point of IC = 1mA. What is the value of internal
emitter resistance rE at room temperature? What is rE if the transistor heats up to 50◦C?

6. An npn transistor has a nominal operating point of IC = 10mA. If there is also a time dependent
current iC(t) of amplitude 8mA, what is the ratio of minimum to the maximum value of rE as iC
is changing?

7. An emitter-follower circuit is built using a transistor with β = 100 and with RE = 1000Ω. What
is the input impedance of the open circuit? If a load of 100Ω is connected to the output of the
circuit, what is the input impedance?

8. An emitter-follower circuit is built using a transistor with β = 150 and with RE = 1500Ω. It
is connected to a source with output impedance 1000Ω. What is the output impedance of the
emitter-follower?

9. The emitter-follower in problem 8 is connected to a source with output impedance 100 kΩ. For
what load resistance will the output sag below one-half its nominal value?

10. A common-emitter amplifier is built with RE = 100Ω and RC = 1.5 kΩ. What is the gain of the
amplifier?

11. A common-emitter amplifier is to be driven with a power supply of voltage VCC = 10V . If the
maximum amplitude of the input signal is 1V , what should be the nominal value of VC to have
the maximum output range on vC(t)?

12. A common-emitter amplifier is to be built with a gain of −25. This implies that the ratio of RC

to RE should be 25. What criteria other would you consider in choosing actual values for RC and
RE?

13. In the discussion of the grounded emitter amplifier, we found the gain expression as given in
equation 5.35. What is the maximum value of vb such that the gain does not vary by more than
5% from its nominal value?

14. In the discussion of the grounded emitter amplifier, we found the gain expression as given in
equation 5.35. If the temperature of the transistor is 50◦C, what is the maximum value of vb such
that the gain does not vary by more than 5% from its nominal value?

15. You have built the circuit shown in Figure 5.42 and are using it to make measurements. The
supply (DC) voltage, VCC , is applied at point A. Unless otherwise noted, express your answers
in terms of VCC , R1, R2, RE , RC , C1 and the β of the transistor. (a) Correctly label the base,
emitter and collector on the npn transistor in the above circuit. (b) If the nominal (DC) voltage
level at the base, VB, is supposed to be 1

10 of the controlling voltage, VCC , what is the ratio, R2

R1
?
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Figure 5.42: The circuit for problem 15.

(HINT: Only consider R1 and R2 in the voltage divider.) (c) What are the (DC) voltage level,
VE , and the current , IE , flowing through the resistor RE? Express your answers in terms of VB

and RE . (d) What are the current, IC , flowing through the resistor RC , and the voltage at the
collector of the transistor, VC? Express your answer in terms of VB, RE , RC and VCC . (HINT:
is it safe to ignore IB?) (e) A small changing voltage, vin, is now added to the base voltage, VB .
What is the change in the collector voltage away from VC , vo, due to this small input change? Now
assume that VCC = 10.0V and that the static value of VB = 1.0V . In addition, let RC = 10×RE .
(f) A sinusoidal input voltage, vin = 0.5 cos(ωt), is applied to the circuit as shown in the figure.
On the same plot of voltage versus time, sketch vin and vo. Sketch them both for exactly one
period starting at time t = 0. Be sure to accurately label your plot. Also, make sure to identify
any possible clipping of the output voltage. (g) The capacitor, C1, forms a high–pass filter for
the input voltage, vin. Describe the method by which you would determine the resistance, Reff ,
that goes into this filter (do not evaluate Reff ). What resistor in the circuit is probably closest
in value to Reff? (h) If you wanted the 3dB point on the filter to be at f = 10Hz, what values
would you choose for C1? Express your answer in terms of Reff from the previous part. (HINT:
A numerical answer is NOT possible).
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Figure 5.43: The circuit for problem 16.

16. The transistor circuit shown in Figure 5.43 is constructed using two identical transistors, T1 and
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T2 (current gain β ≈ 100). It contains three capacitors (C1, C2, C3) and seven resistors (R1, R2,
R3, R4, RC , RE , Re). Initially, you know that RC = 10RE . A DC voltage , VCC , is connected
between A and ground such that point A is positive. A small, time-varying input voltage, vin(t), is
connected as shown. This produces an output voltage, vout, as shown in the figure. (a) If vin = 0,
what are the approximate voltages at the bases of the two transistors, T1 and T2? (Express your
answer in terms of VCC , RE , Re, R1, R2, R3, R4, C1, C2 and C3; assume a well designed circuit!)
(b) Give reasonable estimates for the voltage at the base of the transistor T2 which would allow
this circuit to function optimally. Briefly explain your choices. (c) Explain the purpose of the
three capacitors shown in the circuit including any relevant frequencies. (d)Assume that both
transistors are biased such that they are in their linear operating range, and an input voltage of
vin(t) = 0.001Vcc cosωt is applied (where ω is chosen to be in the normal operating range for the
circuit). What is the open circuit output, vout(t)? Explain your reasoning. (e) As seen from
the output terminal, vout, what is the Thèvenin equivalent circuit? Estimate the values of the
Thèvenin impedance and voltage. For what frequency range is your answer applicable?
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Figure 5.44: The circuit for problem 17.

17. Consider the transistor circuit shown in Figure 5.44. Assume the transistor is in its normal
operating range, unless otherwise specified. The transistor has a current gain β. VCC is a DC
voltage supplying power to the circuit and vi is a time-varying input voltage. vc and ve are the
time-varying parts of the output voltage (what you would see if you AC-coupled your scope). You
may assume that the circuit has well-chosen resistor values. Express your answers in terms of β,
VCC , vi, R1, R2, RC and RE and state approximations that you make due to the circuit being
well designed. (a) Assume that vi = 0. What are the voltages at the base of the transistor, VB ,
at the emitter of the transistor, VE , and at the collector of the transistor, VC? (b) Capacitor C1

forms an RC filter with some total resistance R. What is R and what kind of RC filter have we
formed? (c) Assume that RC = RE ≡ R. What are ve and vc in terms of vb? (d) Using this
circuit, we want to drive a load RL which is similar in size to RE = RC = R. Is it better to drive
the load using vc or ve? Explain why.

18. A circuit is built as shown in Figure 5.46. Assume the transistor is in its normal operating range,
unless otherwise specified. The transistor has a current gain β and VCC is a DC voltage to control
the circuit. You are told that R1 = R2 = RE = R. You may assume that the circuit has well-
chosen resistor values. Be sure to list any approximations that you make due to the circuit being
well designed. (a) What are VB , VC and VE in terms of β, VCC and R? (b) What are IB, IC and
IE in terms of β, VCC and R? Be sure to indicate if these currents flow “into” or “out of” the
transistor. (c) Define I1 as the current through R1 and I2 as the current through R2. Assuming
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Figure 5.45: The circuit for problem 18.

that there is no current flowing into the base of the transistor, compute I1 and I2. Compare your
values to IB from part b. In particular, is IB smaller than, similar to, or larger than I1 and I2?
(d) What is the Thèvenin equivalent output resistance if we use VE and ground as our output
terminals?

���� �ÿ�����R1=27 kΩ

����ÿ������ ��
VCC=16 V

�����R2=3 kΩ ����ÿý
���RC

��������� �
ÿ����RE ���ÿ����� ���������� �����RL=RE/3 ����������������� �

P

Figure 5.46: The circuit for problem 19.

19. An npn transistor, having β = 100, is connected as shown to VCC = 16V and to ground using
resistors R1 = 27 kΩ, R2 = 3 kΩ, RC , RE , and RL = RE/3. You may assume the transistor
circuits in this problem are properly biased to operate normally. You may make reasonable
approximations, but explain what approximations you are making. (a) What would the be the
value of the potential, VP , expected at point P if the base of the transistor were not connected to
point P? (b) What are the requirements (if any) on the values of RE and RC if VP is to not to
be loaded down significantly when the base of the transistor is connected to point P? (Remember
that RL = RE/3.)? Now RE and RL are chosen as RE = 600Ω and RL = 200Ω. Capacitors C1,
C2, and C3 are added to allow a small A.C. signal, vi(t) to enter the circuit and to allow A.C.
signals vC and vE to be extracted from the circuit. (c) If vi is known to be made up of a range of
frequencies between fmin = 100Hz and fmax = 40 kHz, what are the requirements on the value
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of C1 to allow the signals to pass through the circuit without being distorted? (Clearly indicate
the value of any relevant resistance used in the calculation and don’t forget factors of 2π.) Assume
C1, C2, and C3 have been correctly chosen so the signals won’t be distorted. (You may neglect
the impedance of the capacitors at the frequencies of interest.) (d) If RC = 0 (i.e. the resistor
is replaced with a piece of wire) , find vE and vC . (e) If RC = 2400Ω, find vE and vC . (f) The
output impedance of the device which generates vi is Ri = 50Ω. Approximately what is the
output impedance at the point where vE is measured? (Neglect the impedance of all capacitors
at the frequencies of interest.)
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Figure 5.47: The circuit for problem 19 c.
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Chapter 6

Feedback and Operational
Amplifiers

6.1 Introduction

In many situations, the mechanism of feedback is used to stabilize the behavior of a system. The basic
idea is that part of the output of the system is fed back into the input, either in-phase or out-of-phase
with the input signal. The in-phase case is referred to as positive feedback, while the out-of-phase is
known as negative feedback. In general, positive feedback tends to be unstable, with the output being
driven away from its non-feedback values. Negative feedback has the opposite effect. It tends to make
systems more stable, holding an output near a particular desired value.

We consider systems in which the output is some function of the input, but is limited between two
values. One use of positive feedback is to quickly drive the system to one of the two limiting values.

6.2 Negative Feedback

Negative feedback is the process of subtracting some fraction, β, of the output from the input signal.
This is shown schematically in Figure 6.1. Some input signal, vin, goes into a device with gain Ao,
which produces an output (with no load) of vout = Aovin. We now subtract a portion of the output,
βvo, from the input. In the figure, this is shown as

vsum = vin − βvout .

This allows us to write

vout = Ao · vsum ,

or

vout

vin
=

Ao

1 + βAo
.

We refer to Ao as the open-loop gain of the device, and can define the overall gain (with feedback) to
be Af , where

Af =
Ao

1 + βAo
. (6.1)

167
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Adder

−β

Ao
vin

voutvsum

Figure 6.1: A negative feedback loop. A fraction, −β, times the output signal is added back to the input
signal: vsum = vin − βvout.

Typical circuits in which we employ feedback have very large open-loop gains. If βAo is much larger
than one, then the overall gain can be written as

Af ≈ 1

β
. (6.2)

At first, this might not seem very useful. However, β is usually something that we can control very
precisely, while the exact value of Ao may not be stable. In the case of high-gain transistor circuits,
this was clearly true. Ao might also have some frequency dependence. What equation 6.2 says is that
we can give up some of the gain, Ao, to get a very stable gain, Af . This is generally a very good thing,
and one benefit of negative feedback.

As an example of this, consider a situation where we have set β = 1
100 , while Ao varies from 5000 up

to 500000 in some fashion over which we have little or no control. If we put the two limiting values of
Ao into equation 6.1, we get:

Af (Ao = 5000) = 5000
1+5000/100 = 98.0

Af (Ao = 5000000) = 5000000
1+5000000/100 = 99.98

As Ao changes by a factor of 1000, Af changes by less than 2% . This is an extreme situation; more
typically Ao might change by 10 to 20%, which would then lead to an extremely small change in Af as
long as βAo is large compared to one.ð
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�� �ú
iin

�� �����Zino ���ÿ������ �ð �������� �ÿ������� �ò���/Aovin

����Zouto

ú
iout

� �ò
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Figure 6.2: The equivalent circuit for a common-emitter amplifier circuit with gain Ao, input impedance
Zino

and output impedance Zouto
.

We now consider an amplifier whose equivalent circuit is shown in Figure 6.2. The circuit has an
open-loop gain of Ao, input impedance Zino

and output impedance Zouto
. We have already examined

what happens to the gain of the circuit when we add negative feedback. Let us now look what happens
to the input and output impedance of the circuit. Figure 6.3 shows the same circuit with negative
feedback.
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The voltage across the input impedance drops from vin to vsum = vin − βvout. We can also write

vsum = iin · Zino
.

Combining this equation with the ones from above, it is possible to write that:

vin = iinZino
+ β

Ao

1 + βAo
vin .

The input impedance is just the ratio of vin/iin, which allows us to solve for Zinf
:

Zinf
= (1 + βAo)Zino

. (6.3)

The input impedance with feedback is substantially larger than without feedback. This is certainly a
very good property. It means that the input of such a circuit will draw very little current, which in
turn will not load down the output of the previous stage. It is also relatively easy to understand this.
Because the negative feedback is working against the input, the system draws less current than it would
without the feedback. This then yields a larger input impedance.ð
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outxyyyyyy z Aovsum

|{}xyyyyyyyyyyy z||||{}x z
Figure 6.3: The equivalent circuit for an amplifier with gain Ao and a fraction β of the output voltage
connected to the input as negative feedback. The input impedance, Zin0

, and output impedance, Zout0 , are
those for the circuit without feedback.The output voltage is Afvin rather than the open-loop Aovin.

Similarly, we can examine the output impedance of the circuit. If we look at the voltage drops on
the output side of the circuit, we can write

v′out = Aovsum − ioutZouto
.

Expanding vsum, we find

v′out = Ao (vin − βv′out) − ioutZouto
,

which can be solved for the current

iout =
Aovin

Zouto

− 1 + βAo

Zouto

v′out .

From this we see that the output impedance with feedback is

Zoutf
=

Zouto

1 + βAo
. (6.4)

The output impedance with feedback is smaller than that without feedback by 1/ (1 + βAo). In the
approximation that we have high open-loop gain, this is quite a bit smaller than one.

Thus, negative feedback on a high-gain amplifier gives us very large input impedance, very small
output impedance, and precise control of the gain.
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6.2.1 A High-Gain Amplifier

Figure 6.4 shows a high-gain amplifier built using three transistors. The first two stages are common-
emitter amplifiers, while the third stage is an emitter-follower circuit. The small-signal gain in the first
the stages has been increased by partly bypassing the emitter resistors with capacitors.

This design incorporates negative feedback, which is accomplished with a voltage divider consisting
of Rf1

and Rf2
. The output signal that is fed back into the input is in phase with the input signal. This

feedback is negative because it causes vBE of the first stage transistor to be smaller than it would be
without the feedback. The feedback is controlled by the two resistors in the feedback divider:

β =
Rf2

Rf1
+Rf2

. (6.5)

We could well imagine building up ever more complicated amplifiers with larger numbers of transistor
and feed-back stages. In fact, this has been done for us, and it has been packaged in a convenient form.
So, rather than worrying what we would need to do to build such a device, we will simply add it to our
list of convenient components. This device is discussed in the following sections.
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Figure 6.4: Two stages of high-gain transistor amplifiers followed by an emitter-follower circuit. The output
signal goes through C5 and Rf and feeds back into the emitter of the first stage as negative feedback.

6.3 Op-Amps

In the preceding sections, we found that by adding negative feedback to a high-gain amplifier, we can
build a very stable amplifier whose gain is precisely controlled by external circuit elements. While we
have examined transistor circuits that can function as basic amplifiers, a commonly-used type of high-
gain amplifier is the Operational Amplifier or Op-Amp. These are integrated-circuit amplifiers which
internally have a large number of transistors. Op-Amps are designed to have very large open-loop gain,
very large input impedance and very small output impedance. Figure 6.5 shows an op-amp with two
inputs non-inverting and inverting and and output. The figure also explicitly shows the external power
connections: VCC and VEE . Typically, these are not shown in a circuit, but they do need to be hooked
up in order for the op-amp to work. The output of the op-amp can be driven very close to either of these
two supply voltages. While in the symbol shown in Figure 6.5, the inverting input is below the non-
inverting input, these are also drawn reversed. The + and − in the figure indicates what the two inputs
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are. In this book, we will draw the op-amp symbol in both ways—to make the overall circuit clearer. In
building such circuits, it is important to identify which input is inverting and which is non-inverting.

Op-Ampþ out

��óVCC��ñVEE
non-inverting input

inverting input

Figure 6.5: An op-amp explicitly showing the two power connections, VCC and VEE . There are two inputs,
labeled inverting and non-inverting, and the output.

As long as the desired output is within the range defined by the supply voltages, the output is given
as

vout = Ao (v+ − v−) (6.6)

where v+ is the voltage at the non-inverting input and v− is the voltage at the inverting input. The open-
loop gain, A0, of an op-amp can be very high, with Ao ∼ 105 not being unusual. If the desired output
is outside of this range, the output will be driven close to one of the two limits and the equation 6.6 is
not valid.

Op-amps are normally only used with feedback, where we take advantage of the high open-loop gain
to build a very stable, lower-gain amplifier. To understand how op-amp circuits work, we start with
some approximations that allow us to get a very good idea what a particular circuit will do. These
assume that we have ideal op-amp behavior, which is defined as follows:

1. The open-loop voltage gain is infinite, A0 = ∞.

2. The input impedance to the op-amp is infinite, Zin = ∞, which means that the two op-amp inputs
draw no current.

3. The output impedance of the op-amp is zero, Zout = 0.

4. The op-amp can change the output voltage instantaneously (the slew rate is infinite).

5. When both inputs are at the same voltage, the output voltage is zero.

6. The op-amp performance does not depend on variations in temperature.

7. The op-amp performance does not depend on variations in supply voltage.

From these approximations , we arrive at two rules that allow us to understand op-amp circuits.
The first rule is based on the fact that the op-amp has a very large input impedance. Typical values

are in the range of 106 to 1012 Ω. This means that very little current actually flows into the input of an
op-amp. While it is not exactly zero, we can approximate it as zero for our calculations. This leads to
our first rule.

1. No current flows into the inputs of an op-amp.
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The second rule comes from the fact that the open-loop gain of an op-amp is very large. The only
way to get an output that is not at one of the two supply voltages is to have the difference in the two
inputs in equation 6.6 be very small. Otherwise, when the difference is multiplied by the very large Ao,
the output will be huge. In an op-amp with feedback, we can approximate the difference as exactly
zero, which leads to our second rule.

2. The feedback in the op-amp circuit drives the voltage differences between the inverting and non-
inverting inputs to zero.

These two rules are both easy to apply, and give us a very good first-order understanding of circuit
behavior. They are of course both approximations, so it is possible to describe the system more precisely,
but often we do not need to do that. In the following, we will apply these rules to several op-amp circuits.
In a section 6.4 we will revisit the basic assumptions that went into these rules and look in detail at
what consequence the actual ope-amp behavior has on an op-amps operation.

6.3.1 The Op-Amp Follower Circuitþ��� �ðvin ��� �ÿ��� �ò
vout������������������������� ������ �

Figure 6.6: A follower circuit built with an op-amp.

Figure 6.6 shows an op-amp follower circuit. Our first rule states that the neither of the two inputs
draws any current. While this does not help in analyzing the behavior of this circuit, it does tell us that
the op-amp will not load down the circuit driving it. The second rule states that the difference between
the two inputs is zero. Since the output is fed directly into the inverting input, this means that

0 = vin − vout ,

which then yields

vout = vin .

The follower circuit is useful in the same situations where we used the transistor emitter-follower
circuit. Its important property is that it acts to transform impedance. Figure 6.7 shows the equivalent
circuit. The crucial point is that Zin is very large (approximated as ∞) while Zout is very small
(approximated as 0). ð

vin

�� �ú
iin

�� �����Zin ���ÿ������ �ð �������� �ÿ������� �ò���/vin

����Zout

ú
iout

� �ò
vout

Figure 6.7: The equivalent for an op-amp follower circuit.
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Figure 6.8: An inverting amplifier circuit built with an op-amp. The gain is G = −Rf/Rin. Note that the
op-amp here has its inputs reversed relative to the symbol. In particular, the non-inverting input is grounded.

6.3.2 An Inverting Amplifier

The circuit shown in Figure 6.8 is an inverting amplifier (notice that the input signal is now applied
to the inverting input). The feedback is accomplished with resistors Rf and Rin. To understand the
behavior of this circuit, we again apply the two op-amp rules. The second rule tells us that the voltage
at the inverting input should be the same as that at the non-inverting input. The latter is grounded, so
we say that the inverting input is a virtual ground. We now know that there is a potential drop, vin,
across the input resistor, Rin, which means that a current

iin = vin/Rin

flows through the resistor, Rin. From the first op-amp rule, none of this current flows into the op-amp,
so it must all flow through Rf to the output. The voltage drop across Rf gives us the output voltage

vout = 0 − iinRf ,

which means that

vout = − Rf

Rin
vin .

With appropriate choice of resistor values, the output can be much larger than the input with the gain
given as

G = − Rf

Rin
.

6.3.3 A Non-inverting Amplifier

The circuit shown in Figure 6.9 is a non-inverting amplifier. To understand the behavior of this circuit,
we take advantage of the second op-amp rule to note that the feedback must make the voltage at the
inverting input be vin. The two resistors, R1 and R2, then form a voltage divider. The first rule says
that no current flows into either input, so with input vout across both resistors, the output across R2 is
just vin. This gives

vin =
R2

R1 +R2
vout .
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Figure 6.9: A non-inverting amplifier circuit built with an op-amp. The gain is G = 1 +R1/R2.

This can be rearranged to yield the gain of the circuit

G =
(R1 +R2)

R2
or

G = 1 +
R1

R2
.
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6.3.4 A Differential Amplifier

In many applications, small signals need to be sent through relatively long cables before reaching elec-
tronics which will process them. Unfortunately, such signals are susceptible to noise during transmission.
One way to reduce this problem is to transmit a differential signal. Two lines are run from the source
to the receiver. The signal, vs, is transmitted in one line, while a negative copy of the signal, −vs, is
transmitted along the other. It is normal for the two lines to be wound around each other in what is
referred to as a twisted pair. If noise, vn, is picked up during transmission, then both lines will have
picked up the same noise. Rather than vs and −vs, the two signals will now be v1 = vn + vs and
v2 = vn − vs.

If, at the receiver end, we now combine the two signals back together such that vr = v1 − v2, then
with a little math, we see that vr = 2 · vs. The noise has been subtracted out. This is the power of a
differential signal.

In order to do the subtraction, we need to have a differential amplifier. An example of such a circuit
is shown in Figure 6.10. The signal, v1, goes into the non-inverting input, while the inverted signal, v2
goes into the inverting input. We will find that the output voltage is

vout =
R2

R1
(v1 − v2) .

It is very important to match the two pairs of resistors. In building this circuit, the use of precision
resistors is probably warranted. It might also be useful to hand-select the resistors as well.þÿ� ��

R1

� �ð
v2

��������� ��R2

����� ��������ÿ��� �ò
vout

�� �ÿ� ��
R1

� �ð
v1 ����R2 ý

Figure 6.10: A differential amplifier circuit built with an op-amp. The gain is G = R2/R1.

We can analyze the behavior of our circuit using our two op-amp rules as before. At the inverting
input, we have a voltage given as

vinv = v1 ·
R2

R1 +R2
.

This means that the voltage at the non-inverting input will be equal to this. The voltage drop across
R1 going into the non-inverting input is

vnoninv = v2 − v1 ·
R2

R1 +R2
.

This gives that the current through R1 is:

inoninv =
v2
R1

− R2

R1

v1
R1 +R2



176 CHAPTER 6. FEEDBACK AND OPERATIONAL AMPLIFIERS

This then yields that the output voltage is

vout = vnoinv − inoinvR2 ,

which can be simplified to yield

vout =
R2

R1
(v1 − v2) . (6.7)

6.3.5 The Adder Circuit

The circuit shown in Figure 6.11 produces an output equal to a weighted sum of the input voltages and
is known as an adder circuit. Applying the second op-amp rule, we have that the inverting input must
be a virtual ground because the non-inverting input is grounded. This means that the voltage drop
across each of the input resistors must be equal to their corresponding input voltage. Thus the current
through each resistor is

i1,2,3 = v1,2,3/R1,2,3 .

As no current flows into the inputs of the op-amps, the sum of all the currents must flow through Rf

to the output.

vout = 0 − (i1 + i2 + i3)Rf

Putting these together, we get

vout = 0 − Rf

R1
v1 −

Rf

R2
v2 + −Rf

R3
v3 .

In the case where R1 = R2 = R3 = Rf , the above equation reduces to

vout = − (v1 + v2 + v3) . (6.8)

The output is the negative sum of all the inputs to the op-amp.

ÿ�� ���ý � �ÿ�� �ò
vout

������������ ��
Rf

������ �����ÿ��� �ÿ������� ��
R1

� �ð
v1 �� ��

R2

� �ð
v2 ������� ��

R3

� �ð
v3

Figure 6.11: An op-amp adder circuit. Note that the op-amp symbol has the non-inverting input grounded.

6.4 Limits on Op-Amp Performance

In the previous section, we treated op-amps as if they had ideal characteristics. As one may expect,
physical op-amps deviate from this ideal in several ways. In the following, we discuss the nature of
these deviations and the consequences of some of them. We also note that there are a large number of
different op-amps on the market, many of which are carefully designed to minimize the effects of one
or more of the following problems. In designing a real circuit, it is quite likely that one can obtain an
op-amp that is well suited to the task at hand.
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6.4.1 The Voltage Gain

First, we assumed that the op-amp had infinite open-loop gain. In fact, while the gain is large, it is
finite and also falls off with increasing frequency. Typical op-amp open-loop gains are very large in the
range of ≈ 10Hz, and fall off about 20 dB per decade. The frequency at which the open-loop gain is
equal to 1 is referred to as fT . Figure 6.12 shows the gain for a couple of typical op-amps. The figure
also shows a line for a typical feedback gain, Af = 100. The feedback gain cannot exceed the open-loop
gain. When the curves get close together, the Af curve will follow the open-loop gain curve, but will
always be smaller than A0.
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Figure 6.12: The open-loop gain as a function of frequency for two different op-amps. The frequency at
which the open-loop gain is equal to 1 is known as fT . Also shown is a curve for Af = 100. When this
curve gets close to the open-loop gain, it will fall off, staying just slightly below the A0 curve.

6.4.2 Phase Shifts

In an open-loop configuration, the output is about 90◦ out of phase with the input at the point where
the voltage gain begins to fall. The phase shift rises towards 180◦ as input frequency increases. At fT ,
where the open-loop gain is one, the difference between the phase shift and 180◦ is known as the phase
margin. While we will not use the phase margin in this text, it is a number that one would find on the
specification sheet for an op-amp.
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6.4.3 The input impedance and input current

Because the op-amps are built out of transistors, they need to draw some small but non-zero input
current. This current is known as the input bias current, IB. This is one half the sum of the two input
currents with the inverting and non-inverting inputs held at the same voltage. These currents are just
the base or gate currents of the input transistors of the op-amp. For bipolar junction transistors, typical
values are measured in tens of nA, while field effect transistors have values typically measured in tens
of pA.

Related to this is the input impedance of the op-amp, which has been approximated as infinite. With
the use of feedback, the input impedance tends to be very large. The fact that it is not infinite does not
tend to be a very important parameter in op-amp performance.

Example: Consider the inverting amplifier shown in Figure 6.8. Let us assume that we are using a
741 op-amp whose base current is about 30nA. If we have a 1mV input signal that we want to amplify
to 100mV , we choose Rin = 1 kΩ and Rf = 100 kΩ. Assuming that the inputs need to be at nearly the
same potential, we find that the current through the input resistor is

iin = 1.0µA .

This current is split, with 30nA flowing into the op-amp input and the remaining 970nA flowing through
the feedback resistor. This means that the output voltage is

vout = 97mV ,

which is about 3% lower than the expected ouput. This could be reduced by using smaller resistors so
that there is a larger input current, or by using an op-amp with a smaller base current such as the 411
(Ibase = 0.2 nA).

6.4.4 Input Range

The inputs to an op-amp are limited to a finite voltage range. This is typically something less than the
supply voltages of the op-amp. It also may not be symmetric. Many op-amps can run closer to the
positive supply than the negative supply. If these ranges are exceeded, the behavior of the op-amp can
be quite unexpected. Things like phase reversal, or output being pushed to one of the limits can occur.

6.4.5 The Slew Rate

The rate at which the output voltage of an op-amp can change is known as the slew rate. This is
typically measured in V/µs. If we have a square wave input to an op-amp circuit, then the output will
be limited by the slew rate as shown in Figure 6.13(a). While this is an extreme case, the same problem
can apply to other types of inputs. If an input voltage has time dependence of sinωt, and produces an
output voltage of vout = Vo sin (ωt), then the rate of change of this output voltage is

dvout

dt
= ωV0 cos (ωt) .

The maximum rate of change is ωV0. If this is larger than the slew rate of the op-amp, then the signal
will be distorted near the zero-crossings of the output voltage (Figure 6.13(b)).

6.4.6 Input Offset Voltage

The two op-amp inputs are generally not identical, with the differences due to manufacturing. This
imbalance can be easily seen by setting an op-amp up with the same voltage applied to both inputs
and no feedback. If the inputs were identical, the output would be zero. However, it is normally either
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Figure 6.13: The slew rate limits how fast an op-amp can change the output voltage. For the square-wave
input (a), the output has some maximum rate of change (V/µs). This is known as the slew rate. For a
sinusoidal function (b), the maximum rate of change is at the zero crossing, ωVo. If this is larger than the
slew rate of the op-amp, the op-amp will distort the sine wave.

VCC or VEE . In order to compensate for this, most op-amps have two offset inputs. Using a 10 kΩ
potentiometer as shown in Figure 6.14, it is possible to trim the op-amp so that the voltage at the
two inputs are the same. The output will still not be zero, but the two inputs will be much closer to
identical.

For example, the LF411 op-amp has an average offset voltage of 0.8mV and a maximum of about
2mV. Unfortunately, these values also have a temperature drift of about 0.007mV/K. The offset
voltage might also drift with time. If this drift is detrimental to the circuit, one should select an op-amp
in which it is much smaller. Precision op-amps exist whose voltage offset is measured in microvolts and
whose drifts are quite small.

Figure 6.15 shows the pin outs for a couple of common op-amps. Pins 1 and 5 are used to adjust
the voltage offset.

6.4.7 Input Offset Current

Not only are the input voltages not quite identical in an op-amp, the currents drawn by the two inputs
can also differ. Like the offset voltages this offset current the result of manufacturing. If both inputs are
driven by identical sources, the small difference in input current will lead to slightly different voltages
at the two inputs.

6.4.8 Op-amp Specifications

Table 6.1 gives the specifications of a couple of commonly used op-amps, the LM741 and the LF411.
Both of these are known as jelly beans. Wikipedia gives the following definition of “jelly bean” in the
semiconductor industry.

In the semiconductor industry, a jelly bean component is one which is widely available,
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Op-Ampþ out
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non-inverting input

inverting input ����� ���ÿ#�����o ��������o
Figure 6.14: A circuit to compensate for the offset voltage in an op-amp. The adjustment is made by
grounding the two inputs and adjusting the potentiometer such that the output is very close to the transition
from VCC to VEE .
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Figure 6.15: The eight-pin flat package for both the LM741A and the LF411 op-amp. The two pins labeled
Offset are used to correct for non-ideal input properties of the op-amp.

used generically in many applications, and has no very unusual characteristics - as though
it might be grabbed out of a jar in handfuls when needed, like jelly beans. For example,
the 741 might be considered a jelly bean opamp.

Device Input Voffset IBias Slew Rate fT Gain
Trans. Typ. Typ. Typ. Min. Typ.

LM741A Bipolar 0.8mV 30nA 0.7V/µs 6MHz 50000 200000
LF411 JFET 0.8mV 0.2nA 15V/µs 4MHz 25000 200000

Table 6.1: Properties of two jelly bean op-amps, the LM741A and the LF411.
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6.5 Active Filters

6.5.1 Integrating and Differentiating Circuits

So far, we have looked at circuits in which the feedback was controlled by purely resistive elements.
However, it is also possible to build circuits in which the feedback is controlled by complex impedances.
We can start with the the inverting amplifier in section 6.3.2. Here we will replace the resistors Rin and
Rf with impedances Zin and Zf as shown in Figure 6.16. We can use the same analysis that we did

ÿÿ� ��
Zin

ð
vin � �ÿ��� �ò

vout

������������ ��Zf

������ ����������
�

��ý
Figure 6.16: An inverting amplifier circuit using complex impedances Zi and Zf to control the feedback.
The gain of the circuit is given as G(ω) = −Zf (ω)/Zin(ω). Note that the non-inverting input is grounded.

before. The inverting input is at a virtual ground so that the two inputs are at the same voltage. This
means that the current flowing through Zin is

iin(ω) = vin/Zin(ω) .

Because no current flows into the input of the op-amp, all this current flows through Zf , which then
gives that the output voltage is

vout(ω) = 0 − Zf (ω)

Zin(ω)
vin(ω) .

From which the gain is

G(ω) = − Zf (ω)

Zin(ω)
. (6.9)

Let us now consider some particular components: Zf is a capacitor, C, and Zin is a resistor, R.
Putting this into equation 6.9, we find

G(ω) = − 1

jωRC

or

G(ω) = −ωRC

jω
(6.10)

where as before ωRC = 1
RC . The factor of 1

jω in the above equation is the same factor that we find

when we integrate a voltage. If vin = V0e
jωt, then we can integrate this as follows:

∫ t

0

vin(τ)dτ =

∫ t

0

V0e
jωτdτ

∫ t

0

vin(τ)dτ =
V0

jω
ejωτ |t0
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which gives

∫ t

0

vin(τ)dτ =
1

jω
vin(t) + Const . (6.11)

The constant of integration is just some offset that can be neglected here. For a sinusoidal input voltage,
the output is just the integral of the input. This can be generalized to any function by use of Fourier
expansions.

We can also analyze this specific RC case without choosing a particular form for the input voltage.
The current through the resistor, Rin, is i = vin/Rin. This same current must flow through the capacitor.
However, the voltage drop across a capacitor is vC = q/C, or dvC

dt = i/C. This means that we have an
expression for the derivative of the output voltage:

dvout

dt
= − i

C
dvout

dt
= − vin

RC

which gives

dvout

dt
= −ωRCvin . (6.12)

Integrating equation 6.12 and using equation 6.11 yields

vout = −ωRC ·
∫ t

0

vin(τ)dτ . (6.13)

Thus, this circuit acts as an integrator. This is similar to the analysis of the low-pass filter that we did
in chapter 3. There, the circuit integrated when the frequency was much greater than ωRC . The op-amp
circuit has no such limitation. It integrates over all frequencies as long as we can safely approximate
the op-amp performance as ideal.
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Figure 6.17: An op-amp differentiating circuit. Note that the non-inverting input is grounded.

If we reverse the resistor and capacitor, we get the circuit in Figure 6.17. This changes equation 6.10
to

G(ω) = − jω

ωRC
. (6.14)

Carrying out a similar analysis to what we did above, we note that the factor of jω in equation 6.14 is
the factor that we get if the circuit is differentiating:

vout(t) =
d

dt
vin(t) .
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Because the non-inverting input is grounded, the inverting input must be a virtual ground. Therefore,
the voltage drop across the input capacitor is vC = vin. From this, the current through the input
capacitor must be

iin = Cin
dvin

dt
.

Because no current flows into the input of the op-amp, all of it must go through the feedback resistor,
Rf , leading to a voltage drop of iinRf across the feedback resistor. The output voltage is then

vout = −ωRC · dvin

dt
. (6.15)

As with the op-amp integrator, the op-amp differentiator is not limited to a particular frequency regime.

6.5.2 High-pass and Low-pass Filters

The previous two circuits integrate and differentiate signals, apparently without a cut-off frequency.
It is also useful to reproduce the behavior of our high-pass and low-pass filters from chapter 2. The
circuits shown in Figure 6.18 do this. In both cases, equation 6.9 allows us to determine the gains of
these circuits.
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Figure 6.18: A high-pass (a) and low-pass filter (b) built with op-amps. Unlike the passive filters which had
a gain of 1 in the pass-band, these circuits have a gain of −Rf/Rin in their respective pass-bands. Note
that the non-inverting inputs are grounded.

We start by considering the high-pass filter shown Figure 6.18(a). This circuit has input and feedback
impedances of

Zin = Rin +
1

jωCin

Zf = Rf .

If we define the characteristic frequency to be

ωRC =
1

RinCin
,

then it is straightforward to show that the gain of the circuit is

G(ω) = − Rf

Rin
· 1

1 − jωRC/ω
. (6.16)

This has the same frequency dependence as the gain of the high-pass filter built entirely out of passive
components. However, the gain in the pass-band is −Rf/Rin rather than 1. This allows us to build
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a filter with gain. As with the passive filter, we can look at the low- and high-frequency limits of this
circuit.

ω << ωRC G(ω) → j · ω

ωRC
· Rf

Rin

ω >> ωRC G(ω) → − Rf

Rin

Similarly, we can look at the gain of the low-pass filter shown in Figure 6.18(b). This circuit has the
input and feedback impedances of

Zin = Rin

Zf =
Rf

1 + jωRfCf
.

If we define the characteristic frequency to be

ωRC =
1

RfCf
,

then the gain of the circuit is

G(ω) = − Rf

Rin
· 1

1 + jω/ωRC
. (6.17)

This is the same as the low-pass filter with passive components, except that the gain in the pass-band
is −Rf/Rin.

As a final note, one should always keep in mind that the gain of any filter cannot exceed the open-
loop gain of the op-amp. In fact, the gain will always be somewhat smaller than the open-loop gain.
This means that at some large-enough frequency, many filters will reach the falling open-loop gain of
the op-amp. At such a limit, the filter stops doing what it is supposed to do.

6.6 Functional Feedback

Let us now consider the circuit shown in Figure 6.19. The feedback occurs through some device such
that the voltage drop across the device is given by the function f(i), where i is the current flowing
through the device. In such a circuit, the current is

i = vin/Rin

so the output voltage will be

vout(t) = −f
(

vin

Rin

)

.

In other words, the output is some defined function of the input.

Example: Consider the circuit shown in Figure 6.20 where the feedback element is a diode. We know
from Chapter 4 that the current through a diode is

I(V ) = IS

(

ev/VT − 1
)

,

so the voltage drop across the diode is

vdiode = VT · ln (1 + idiode/IS) .
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Figure 6.19: An op-amp circuit with functional feedback.

Recalling that IS is typically pA, for currents through the diode that are mA, we can drop the 1 inside
the logarithm, (which is added to the ratio of currents). We also know that the inverting input of the
op-amp is a virtual ground, thus the output voltage is zero minus the voltage across the diode. We also
know that the current flowing through the diode must be the current flowing through Rin, or vin/Rin.
Putting things together, we find that the output voltage of the circuit is

vout = −VT · ln [vin/(Rin · IS)] .

Thus, the output is proportional to the logarithm of the input.

ÿÿ� ��
Rin

ð
vin ���� �ò

vout

������������ �������� ����������
�
ÿ��ý

Figure 6.20: An op-amp circuit with diode feedback.

6.7 NICS and Gyrators

6.7.1 Negative-Impedance Converters

Consider the circuit shown in Figure 6.21, where matched resistors provide feedback to both inputs.
The non-inverting input is also connected to ground through some impedance Z. We can use our two
rules of op-amp performance to understand the behavior of this circuit.

The non-inverting input is at a voltage v+ = vin, which means that the inverting input must also
be at the same voltage, v− = vin. To determine the output voltage, we note that from vout to ground,
there is a voltage divider consisting of R and Z, where the divided voltage is vin. This gives us

vin =

(

Z

R+ Z

)

vout .
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Figure 6.21: A negative-impedance converter. The input impedance, Zin = −Z.

This can be rearranged to yield an expression for vout,

vout =

(

1 +
R

Z

)

vin ,

so the gain of the circuit is

G = 1 +
R

Z
. (6.18)

Let us now consider the input impedance, Zin, of this circuit. This can be found from

Zin =
vin

iin
.

The input current, iin, depends on the voltage drop across the feedback resistor to the non-inverting
input.

iin =
1

R
·
[

vin −
(

1 +
R

Z

)

vin

]

iin = −vin

Z

Putting all of this together, we find that the input impedance is

Zin = −Z . (6.19)

The input impedance is the negative of the impedance connecting the inverting input to ground. These
circuits are known as negative-impedance converters, or NICS.

Example: Let us assume that the impedance Z is a resistor, R0. Then the input resistance of the
circuit is −R0. If we apply some voltage V0 to the input, the current is Iin = −V0/R0—that is the
current flows from the output to the input. The bigger the voltage we apply, the more current flows out
of the input.

Example: Assume that the impedance Z is a capacitor, C. In this case, Z = 1
jωC , and the input

impedance is Zin = − 1
jωC . Noting that −1

j = j, we can rewrite this as

Zin =
j

ωC
.

The key feature of this is that the current lags the applied voltage, rather than leading it as we would
normally see for a capacitor. In fact, the current leading the voltage is an effect that we get for inductors.
Thus, this circuit, using a capacitor, behaves in some sense like an inductor.
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6.7.2 Gyrators

Expanding on the last example of the NIC using a capacitor, if we could build a circuit that not only
changed the leading current to a lagging one, but could also invert the frequency dependence of the
capacitor, it would be possible to mimic an inductor. A circuit that does this is known as a gyrator ; an
example is shown in Figure 6.22. The input impedance of the gyrator can be determined from the ratio
of vin/iin, as shown in the circuit.

To analyze this circuit, we will start with our simple op-amp rules. The voltage at the non-inverting
input is vin, which means that the voltage at the inverting input must also be vin. This tells us that the
output voltage is also vin. If we have vin at both inputs, we can determine the currents flowing through
the circuit by looking at the right-hand plot in Figure 6.22. The current iin flows through resistor R1,
the current ic flows through the capacitor and the sum of these two flow through R2.

If we define the voltage at the middle of the divider to be va, then we can write the following three
equations:

iin = (vin − va) /R1 (6.20)

ic = (vin − va) /ZC

iin + ic = va/R2

Adding the first two and substituting into the third, we obtain an expression that can be solved for va.

va = vin

(

R2/R1 +R2/ZC

1 +R2/R1 +R2/ZC

)

We can substitute this into equation 6.20 to obtain that the input impedance of the gyrator circuit is
given as:

Zin = jωCR1R2 +R1 +R2 . (6.21)

This looks exactly like an inductor with L = R1R2C and internal resistance RL = R1 +R2. The gyrator
circuit behaves like an inductor connected to ground.ð

vin

ú
iin

� �ÿ������ �þ���R1 ��ÿ���R2 ý � ��� ��
C

� �ÿ������������������� ��������ÿ�� �òvout

óvin ùiin �R1 �� �ÿ�� �����C
ùic

óvin

�R2 ùiin + ic ý
Figure 6.22: A simple gyrator circuit with input Zin = jωR1R2C + R1 + R2. The left-hand figure is the
actual circuit, while the right-hand figure shows how currents flow through the circuit.

A gyrator is useful because it is possible to have both resistors and capacitors on a semiconductor
chip. However, it is not possible to make a true inductor on a chip. By using a gyrator, it is possible to
create a circuit element that behaves like an inductor. Thus, it is possible to build oscillators directly
on a chip.
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6.8 Comparators

6.8.1 Simple Comparators

In many situations, it is useful to be able to compare an input voltage to some reference voltage. When
the input is larger than the reference we get one output, while when the input is smaller than the
reference, we get a different output. Such a comparator is a basic element of many electronic switches,
or devices that convert analog signals to digital. A digital voltmeter is based on such a circuit.

Figure 6.23 shows a simple circuit that does such a comparison. The reference voltage is connected
to the inverting input of the op-amp, while the input voltage goes into the non-inverting input. Looking
at the circuit, the output voltage is nominally

vout = A0 (Vref − vin) ,

however, the output can be no smaller than VEE and no larger than VCC . This means that in reality
vout will be either VCC or VEE . If vin is larger than Vref , then vout = VEE . When vin is smaller than
Vref , then vout = VCC . ÿ�� �ðvin �� �ð

Vref

�� �ò
vout

Figure 6.23: A simple comparator circuit. If the input voltage is larger than Vref , the output will be VEE .
If the input is smaller than Vref , the output will be VCC .

A slight modification to this circuit is shown in Figure 6.24. Here a potentiometer provides an
adjustable reference voltage between 0 and Vref . Such a circuit might form the basis for a thermostat,
where we want to be able to adjust the temperature at which the heat turns on an off in a house.ÿ�� �ðvin �� �!

Rv

óVref ��ý � �ò
vout

Figure 6.24: A comparator circuit where reference can be adjusted to be between Vref and ground using
the potentiometer, Rv.

6.8.2 The Schmitt Trigger

Unfortunately, the simple comparators described in the last section have a potentially undesirable fea-
ture. If the input is both very close to the reference and noisy, then the comparator may be continually
changing states. This situation is shown in Figure 6.25. Such a problem can be solved by the circuit
shown in Figure 6.26, the Schmitt trigger. This circuit is very similar to the comparator, except that it
employs feedback into the input with the reference voltage.
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Figure 6.25: The response of a comparator circuit for an idealized input voltage (left) and a noisy input
voltage (right). In the case with noise, the output oscillates rapidly between the two states as the input
crosses the reference voltage. ÿ�� �ðvin ÿ�� �!
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�� �
Figure 6.26: A Schmitt-trigger circuit whose reference can be adjusted to a value between Vref and ground
using the potentiometer, Rv.

To understand the behavior of this circuit, let us look at the inverting input which is connected to
the reference voltage. We anticipate that the output voltage will still be either VCC or VEE . We will
also explicitly replace the potentiometer with two resistors, R1 and R2, which will then function as a
voltage divider for the reference voltage. and R2. Figure 6.27 illustrates the two possible states of the
system. The voltage to which the input is compared is va when the output is VCC , and vb when the
output is VEE .

The reference voltage, Vr, without feedback would be

Vr =
R2

R1 +R2
· Vref

We can solve for va and vb by considering the currents flowing through the circuit and then see what
happens to the reference voltage, vr in the two cases. If we define the quantity α to be:

α =
R1R2

Rf (R1 +R2)
,
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then we can solve for our two voltages:

va = Vr ·
(

1

1 + α

)

+ VCC ·
(

α

1 + α

)

(6.22)

vb = Vr ·
(

1

1 + α

)

+ VEE ·
(

α

1 + α

)

. (6.23)óVref ���R1 ����� �ÿ��� ����Rf

��óVCC���ÿ�R2 ��ý����� �òva

óVref ���R1 ����� �ÿ��� ����Rf

��óVEE���ÿ�R2 ��ý����� �òvb

Figure 6.27: The two stable states of the Schmitt trigger. The left-hand case has the output voltage at VCC

and the voltage at the non-inverting input is at va. The right-hand case has the output voltage at VEE and
the non-inverting input is at vb.

Let us now consider the limit when α is less than 1. We will also take that VEE = −VCC . In this
case, we find the two voltages to be:

va = Vr + αVCC

and

vb = Vr − αVCC .

Thus va is slightly larger than Vr and vb is slightly smaller than Vr. To understand what the Schmitt
trigger is doing, we consider the voltage response as shown in the left-hand plots in Figure 6.28. The
right-hand plots show a noisy version of the same input. The output of the Schmitt trigger, unlike that
of the simple comparator does not rapidly between the two output states when the input is near the
reference voltage.

The system starts out with vin larger than va and the output voltage at VEE . The input voltage
then drops. When the input falls below vb, the output switches to VCC . The voltage continues changing
and eventually starts to rise. When it rises above va, the output switches to VEE . It remains there until
the input falls below vb again. The key feature is that system is much less sensitive to noise when the
input is near the reference voltage.

Example: Let us consider a Schmitt trigger in which we have a potentiometer of total resistance Rf ,
the same as the feedback resistor. This means that R1 +R2 = Rf , which allows us to rewrite α in terms
of Rf and R1.

α =
R1

Rf

(

1 − R1

Rf

)

The ratio R1/Rf can vary from 0 to 1. The value of α is 0 at both endpoints and a maximum of 1
4

when R1 = 1
2Rf . Finally, we will assume that Vref = 1

2VCC , so the voltage to which we are comparing
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Figure 6.28: The response of a Schmitt trigger to an input voltage vin. The upper plots show the input
voltages while the lower plots show the output voltages. The system changes state at different voltages
depending on whether the output is VCC or VEE . This eliminates the rapid output oscillations seen in the
simple comparator when there is noise on the input signal.

our signal varies from 0 to 1
2VCC . Figure 6.29 shows the reference voltages, Va and Vb, as a function of

the ratio R1/Rf . The dashed line in the figure is what the reference would be without feedback in the
circuit. The main feature to note is that the separation between the two lines is a function of the exact
values of the resistors in the circuit. Also, as we go to the two extremes, 0 and 1, the separation goes
to zero. This removes the ability of the circuit to filter out noise.

The Schmitt trigger is an example of a circuit that exhibits hysteresis. If the input voltage is between
vb and va, then the only way that we can predict vout is to know how the input voltage got to its current
value. If it got there by falling from above va, the the output will be VEE . However, it it got there by
increasing from below vb, then the output will be VCC . Without some knowledge of the history system,
we are unable to predict its current behavior. This “memory” of where the system has been is known
as hysteresis.
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Figure 6.29: The reference voltages for a Schmitt trigger as a function of R1/Rf . The dashed line is what
the reference voltage would be without feedback.
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Problems

1. A negative feedback circuit has an open-loop gain of 1000 ± 15% and a feedback fraction of −β.
How small can β be such that the gain of the circuit is stable to ±1.5%?

2. A negative feedback circuit is designed assuming a constant open-loop gain of 106 with a desired
gain of 100. Unfortunately, the open-loop gain is not constant, but rather falls off as 1/ω, and
reaches 100 at ω = 100000 s−1. What is the gain of the circuit for frequencies above 100000 s−1?
By how much does it differ from the open-loop gain?

3. An op-amp circuit is built with VCC = +10V and VEE = 0V . The inverting input is grounded and
a signal v(t) = 1.0V cos (ωt) is connected to the non-inverting input. Assuming that ω = 100 s−1,
plot the output of the op-amp as a function of time.

4. An op-amp circuit has VCC = +10V and VEE = 0V . The non-inverting input is grounded and
a signal v(t) = 1.0V cos (ωt) is connected to the inverting input of the op-amp. Assuming that
ω = 100 s−1, plot the output of the op-amp as a function of time.

ÿ����� �òvo�� ����ý ÿ�� ��
Ri

�� �ðvi � �ÿ������������� �ÿ������ ��
Cf

��� ����ÿ � �������������� ���
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Rf

�� ������� �������
Figure 6.30: The circuit for problem 5. Note that the non-inverting input is grounded.

5. This question deals with the op-amp circuit shown in Figure 6.30. This has an input resistor, Ri,
and a feedback impedance, ZF , built from a resistor, Rf , in parallel with a capacitor, Cf . The
circuit has an input voltage of vi(t), and an output voltage of vo(t). You may assume that the
op-amp is correctly biased with the appropriate DC voltage such that it is on. (a) The resistor, Rf ,
and capacitor, Cf , in the feedback loop are in parallel with each other. Which one will dominate
in the limit of low frequencies and which will dominate in the limit of high frequencies? (b) Write
the impedance of the parallel pair, Zf , as Rf times a dimensionless quantity. (c) What is the
gain, G, of the circuit in the low-frequency regime? (d) What is the gain, G, of the circuit in
the high-frequency regime? (e) Using your results for c and d, plot the low-frequency and high-
frequency limits of | G(f) | as a function of f on a log-log plot. Sketch a transition curve that
could connect these two limits, and label a frequency (as expressed in terms of known Rs and Cs)
that falls in this transition region. (f) For an arbitrary time-dependent input voltage, vi(t), what
will the input current, ii(t), be? (g) What will be the current in the feedback loop (through the
parallel R-C pair)?

6. The resistor Rf from problem 5 is now removed so that we have the circuit shown in Figure 6.31.
(a) Use the results of parts f and g in problem 5 to show that if we remove Rf , the output voltage,
vo(t), will be proportional to the integral of the input voltage, vi(t). (b) Restore the feed back
resistor, Rf , so that you have the original circuit as shown in Figure 6.30 again. In what range of
frequencies, f , will the output voltage, vo be the integral of the input voltage, vi? (HINT: There
is no exact answer, but you should be able to quantitatively indicate a transition point).
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Figure 6.31: The circuit for problem 6. Note that the non-inverting input is grounded.

7. You have constructed the idealized op-amp circuit as shown in Figure 6.32. Answer the following
in terms of Ri, Lf , Cf and vi.

ÿ����� �òvo�� ����ý ÿ�� ��
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Figure 6.32: The circuit for problem 7. Note that the non-inverting input is grounded.

(a) Which circuit elements are important in determining the gain of this circuit in the limit of
low frequencies (ω → 0, but not quite equal to zero)? (b) Which circuit elements are important
in determining the gain of this circuit in the limit of high frequencies, ω → ∞? (c) What is the
complex gain function in the limit of low frequencies, ω → 0? (Give the limiting dependence on
ω, not just the behavior at ω = 0.) (d) What do you expect to happen when ω = 1√

Lf Cf

? What

physical limitations of real components would limit this behavior? (e) Sketch a Bode plot for the
amplitude of the gain function. Be sure to label your axes and indicate the relevant frequencies,
ω.

8. In the op-amp circuit in Figure 6.33, resistors R1 = R2 = R3 ≡ R, while R4 has a value that is
smaller than R. The input and output voltages are vi and vo respectively. It is possible to measure
the voltage at the points a and b. Answer the following questions in terms of R, R4, vi and vo. Be
sure to state any assumptions that you make, including op-amp rules and approximations. You
may assume that the op-amp is in its normal operating conditions. (a) What are the currents
through resistors R1 and R2 and the voltages at points a and b? Be sure to indicate the directions
of these currents on the circuit. (b) What is the current through R4? (c) Based on what you
found in parts a and b, express the gain of the amplifier in terms of R and R4. (d) Assume that
R : R4 = 100 : 1 and consider the currents through the feedback resistors R2, R3 and R4 (i2, i3
and i4). These currents are similar to the three currents for a transistor, IB, IC , IE . What is the
correspondence of currents, i2, i3, i4 and IB, IC , IE? (f) What determines the analogue of β?
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Figure 6.33: The circuit for problem 8.

9. Consider the op-amp circuit as shown in Figure 6.34. It is sometimes referred to as an all-pass
filter and often used as a phase shifter. You will see why when we discuss the gain, G(ω). (a)

ÿ����� �òvo� �ÿ���������������� ��
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R

�� �����
Figure 6.34: The circuit for problem 9.

Approximately how much current flows into the + and − terminals of the op-amp? (b) What is
the approximate relation between V+ and V−? (c) Does the sum of the currents into the three
terminals (+, −, and output) equal zero? Explain why or why not. (d) You are told that the gain
is

G(ω) =
1 − jωRC

1 + jωRC
.

Graph both the magnitude of the gain (in dB) vs. log frequency, and the phase of the gain vs.
log frequency. Compute the numerical values for the magnitude and phase of the gain in table 6.2
below. In doing so, choose a third frequency value in between the two limits.

Frequency |G(ω)| φG

ω = 0

ω → ∞

Table 6.2: Complete this table as part of problem 9.
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10. Instead of deriving the full expression for the gain from part d in problem 9, let’s consider the
simpler case of just the high-frequency limit of our circuit. In this case, the capacitor may be
treated as a short, giving us the circuit shown in Figure 6.35. (a)What is the current through the
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Figure 6.35: The circuit for problem 10.

lower resistor, R? What is the current through the resistor R1 closest to the input? Both answers
should be expressed in terms of vi, R,R1. (b) Calculate the gain of the new high-frequency equiv-
alent circuit (without the capacitor). HINT: Your answer should agree with the high-frequency
limit of the full-gain expression from part d, in both magnitude and phase!

11. Determine the input impedance of the circuit shown in Figure 6.36. Use this to show that the
circuit is a gyrator. ÿ� ����������������������� �����ÿ� ��
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Figure 6.36: The circuit for problem 11.

12. In this problem, we will be looking at the op-amp circuit shown in the Figure 6.37. The input
voltage is connected to the non-inverting input while the inverting input is connected to ground
through an impedance, Z. Feedback to both the inverting and non-inverting input is through a
pair of resistors, R1 and R2. Answer the following questions in terms of vin, Z and R1 and R2. In
all cases, you can assume that the op-amp input does not cause the output to be driven to either
VCC or VEE . You may also assume that the two rules of op-amp operation apply. (a) What are
the voltages at the inverting and at the non-inverting input of the op-amp? (b) How much current
flows into the inverting and into the non-inverting input of the op-amp? (c) What is the complex
gain, G, of the circuit? (d) If R1 = R2 = R, then it can be shown that the gain of the circuit is
G = 1 + R/Z. What is the input impedance of the circuit when both resistors are equal to R?
(Hint: Zin = vin/iin).
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Figure 6.37: The circuit for problem 12.

13. You have constructed the idealized op-amp circuit as shown in the circuit in Figure 6.38. Answer
the following in terms of R, L, C and vi and assuming idealized op-amp behavior. (a) What is
the magnitude of the gain of the circuit in the limit of ω → ∞ ? (b) What is the magnitude of
the gain of the circuit in the limit of ω → 0 ? (c)What is the complex gain of the circuit as a
function of the angular frequency ω? Express your answer in the form of G = A + jB where A
and B are real numbers. (d) As ω goes from close to zero to a very large value, by how much does
the relative phase between vin and vout change?
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Figure 6.38: The circuit for problem number 13.
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Chapter 7

Digital Electronics

7.1 Introduction to Digital Electronics

Our previous discussions have considered analog electronics, in which a system is allowed to have any
voltage, usually within some given limits. Such a system can therefore be in any of an infinite number
of possible states. Another type of electronics deals with devices having only two states, for example,
the comparator of the previous chapter, whose output can take on the value of either supply voltage,
but nothing in between. This two-state model is the basis of digital electronics.

In digital electronics, we can give names to the two states. Possible pairs of names include off and
on, open and closed, or zero and one. This latter scheme is directly related to counting in base 2, or
binary. Each electronic two-state system is associated with a bit, or binary digit, and putting together
the bits allows one to count as shown in Table 7.1.

base-10 base-2 base-10 base-2
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Table 7.1: Counting to 16 in base 2.

Because the two states are reasonably well separated in voltage, digital systems are much less sensitive
to noise than analog. That is, noise is unlikely to cause one state to be confused with the other.

7.2 A Simple Two-state System

While the comparator, as mentioned, is a fairly simple two-state system, we can examine an even simpler
one in the form of the transistor circuit shown in Figure 7.2. If the input voltage here is less than about
0.65V (VL), then the transistor is turned off, and no current flows. In this case, the output voltage
will be vout = VCC . If the input voltage is larger than 0.65V (VH), the transistor will turn on and
allow current to flow. Because the emitter is connected directly to ground, the current depends on the
internal resistance, rE , of the transistor, but in general it will be large. This drives the transistor into
saturation, with the output voltage falling to the saturation voltage, VCEsat above zero. Figure 7.2

199
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shows the transfer curve for the transistor. This system can switch between two output voltage states,
given approximately as VCC and 0.

�� ��
Rb

� �ð
vin ��ýÿ���RC

óVCC �� �ò
vout

Figure 7.1: A two-state transistor circuit.

vin

ou
t

v

VCC

VCEsat

VCC
0 V VL H

0.65V

Figure 7.2: The transfer curve for the two-state transistor circuit shown in Figure 7.1.

We might note that, for such a device, there is a range of input voltages for which the output will not
be well-defined. Specifically, if vin is between VL and VH , we cannot predict the output of the system.
This means that when we describe a digital device, we must define a range of valid input voltages
which will give rise to particular outputs. When an input is outside these limits, the system is in an
ill-defined state. Normally, the output ranges will be more restrictive than the inputs. This allows for
the possibility of the output suffering electronic noise or distortion before going to the input of the next
stage. In our example, we could define the valid input voltages as shown in Table 7.2, and we would
define valid outputs as being very close to either VCC or VCEsat.

state vin

0 0 < vin < VL

1 VH < vin < VCC

Table 7.2: State definitions for the transistor logic in Figure 7.1.

Another consideration is the speed at which the system can change from one state to the other. Like
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op-amps, which are limited by the slew rate, digital circuits have a finite upper limit on their switching
rate. This limits how fast such circuits can run.

Finally, we might want to examine the currents in our transistor circuit. In one case, the current
is large, while in the other case, it is zero. This means that the power dissipation in the two states
is different, and so noise may be generated when the circuit changes state, because a large current is
changing rapidly.

7.3 Common Digital Families

Numerous different physical compositions, or families, of digital devices exist. As we saw in the last sec-
tion, each of these will have well-defined ranges of valid input and output voltage. Three fairly common
families are transistor-transistor logic, TTL, complementary metal-oxide semiconductor, CMOS, and
emitter-coupled logic, ECL. Their input and output levels are given in Table 7.3, and shown graphically
in Figure 7.3.

Logic State Input Range Output Range
TTL 0 0.00 0.80 0.00 0.50

1 2.00 5.00 2.70 5.00
5V CMOS 0 0.00 1.50 0.00 0.05

1 3.50 5.00 4.95 5.00
ECL 0 −0.81 −1.13 −0.81 −0.98

1 −1.48 −1.95 −1.63 −1.95

Table 7.3: Input and output voltage limits for some common digital logic families.

TTL is based on voltage levels of 0 and 5V , while ECL uses −0.8V and −2V . CMOS has scalable
levels, with the external voltage being referred to as VDD. Table 7.3 lists CMOS levels for VDD = 5V ,
but note that VDD can be either larger or smaller than this. It is this capability which makes CMOS very
important in modern digital electronics, where VDD can be pushed down to around 1V . In addition,
since CMOS is based on MOSFETS, rather than bipolar transistors, it draws significantly less current.

While one might think that the high and low input voltage limits could abut, this would in fact
significantly reduce the noise rejection inherent in digital circuits. If for some reason a signal was very
close to the boundary level, the output state could bounce back and forth. However, a large gap between
the two input voltages, only a very large amount of noise would cause this behavior. Instead, the device’s
behavior would be undefined. While we might not be able to receive the signal then, at least we would
not be misinterpreting a noisy signal.

Given the different behaviors of the digital families mentioned above, it is usually not possible for
the output from one family to serve as the input for another. In general, we need a level converter to
accomplish this. One exception is that the output of a 5V CMOS system can be used as input to TTL
(though the converse is not true).

7.4 Digital Logic

With digital signals, the processing is not done with filters and amplifiers, but rather with logical
operations. These are performed by circuit elements referred to as gates. The simplest gate is a not,
which when applied to digital signals produces an output that is in the opposite state from the input.
In fact, the transistor circuit that we saw in Figure 7.1 is an example of such a gate. We represent the
not operation by drawing a bar over the state, so that 1 = 0 and 0 = 1.

While the not operates on a single input, most operations handle two or more inputs. The logical
or has two inputs. If one or more inputs are high, then the output is high, otherwise it is low. The
symbol for or is a plus sign. The next common operation is a logical and. This also has two or more
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Figure 7.3: A graphical representation of the digital logic levels listed in Table 7.3.

inputs and the output is high if all of the inputs are high, otherwise it is low. The symbol for a and is
a multiplication dot.

There is a second kind of or known as an exclusive-or (xor). With two inputs, an xor outputs a
high if exactly one input is high, otherwise it outputs a low. Finally, all of the common operations can
have their output negated, or operated on by a not. These operations have an n prepended to their
names: nor, nand, and xnor.

If we represent the high state as 1 and the low state as 0, then then we can create a truth table
which shows the result of each logical operation on a pair of inputs, A and B. Examples of this for
individual logic gates are given in the following sections.

7.4.1 De Morgan’s Theorem

In working through logic circuits, DeMorgan’s Theorem can be used to determine equivalent logical
circuits. This theorem states that the complement of an and is the or of the complements and vice
versa. This theorem yields the following two logic equations.

not (A and B) = (not A) or (not B)
not (A or B) = (not A) and (not B)

These can be expressed in logic notation as

A · B = A + B

A + B = A · B .
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7.4.2 Digital Gates

We now want to consider the electronic gates that perform the logical functions which we have discussed.
Some of the earliest digital logic was done with transistors and resistors, and some of these circuits are
still illustrative. With the advent of integrated circuits, things changed considerably and the basic logic
gates are now considered fundamental elements of circuit design. However, because it is illustrative of
how a gate could be built, Figure 7.4 shows three complementary gates built using transistors: a nor

gate, a nand gate and a not. In the case of the nor gate, if either of the inputs are high, then the
corresponding transistor goes into saturation and the voltage at the output O goes low. If both inputs
are low, then the output O is high. One interesting fact is that nand gates and nor gates are generally
simpler than and and or gates. As will be seen later, it is possible to build all the logic gates out of
either a nand or a nor. This is not true of the and and or.
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A ýÿ���R

ó+5V ������ �ÿ�������ý������� ��
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� �ð
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�� �ò
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ÿ���R
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(b)
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ó+5V � �ò(c)

Figure 7.4: Circuit (a) is a nor gate built using two transistors. Circuit (b) is a nand gate built using two
transistors. Circuit (c) is a not gate.

The NOT Gate

The not gate takes a single input, A and returns the complement of A as its output, Q = Ā. The logic
symbol for the not is shown in Figure 7.5along with the IEEE rectangular symbol. (Note that an open
circle at the input or output of a logic gate is used to represent the complement of the signal.) The
truth table for the not gate is given in Table 7.4.

QA
1��

A

ö
Q

Figure 7.5: The logic symbol for a not gate (left) and its IEEE rectangular symbol (right).

A Q
0 1
1 0

Table 7.4: The truth table for the not gate.
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The AND Gate

The and gate takes two inputs, A and B, and returns an output which is the logical and of the two
inputs. The logic symbol and the IEEE rectangular symbol for the gate are shown in Figure 7.6. The
truth table for the and is given in Table 7.5.

A

B
Q

&��A�
B

ö
Q

Figure 7.6: The logic symbol for a and gate (left) and the IEEE rectangular symbol (right).

A B Q
0 0 0
1 0 0
0 1 0
1 1 1

Table 7.5: The truth table for the and gate.

The NAND Gate

The nand gate takes two inputs, A and B, and returns an output which is the logical nand of the two
inputs. The logic symbol and the IEEE rectangular symbol for the gate are shown in Figure 7.7. The
truth table for the nand is given in Table 7.6.

A

B
Q

&��A�
B

ö
Q

Figure 7.7: The logic symbol for a nand gate (left) and the IEEE rectangular symbol (right).

A B Q
0 0 1
1 0 1
0 1 1
1 1 0

Table 7.6: The truth table for the nand gate.

The OR Gate

The or gate takes two inputs, A and B, and returns an output which is the logical or of the two inputs.
The logic symbol and the IEEE rectangular symbol for the gate are shown in Figure 7.8. The truth
table for the or is given in Table 7.7.
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Figure 7.8: The logic symbol for a or gate (left) and the IEEE rectangular symbol (right).

A B Q
0 0 0
1 0 1
0 1 1
1 1 1

Table 7.7: The truth table for the or gate.

The NOR Gate

The nor gate takes two inputs, A and B, and returns an output which is the logical nor of the two
inputs. The logic symbol and the IEEE rectangular symbol for the gate are shown in Figure 7.9. The
truth table for the nor is given in Table 7.8.

B

A
Q

≥1��A�
B

ö
Q

Figure 7.9: The logic symbol for a nor gate (left) and the IEEE rectangular symbol (right).

A B Q
0 0 1
1 0 0
0 1 0
1 1 0

Table 7.8: The truth table for the nor gate.

The XOR Gate

The xor gate takes two inputs, A and B, and returns an output which is the exclusive or (xor) of the
two inputs. The logic symbol and the IEEE rectangular symbol for the gate are shown in Figure 7.10.
The truth table for the xor is given in Table 7.9.

The XNOR Gate

The xnor gate takes two inputs, A and B, and returns an output which is the logical xnor of the two
inputs. The logic symbol and the IEEE rectangular symbol for the gate are shown in Figure 7.11. The
truth table for the xnor is given in Table 7.10.
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Figure 7.10: The logic symbol for a xor gate (left) and the IEEE rectangular symbol (right).

A B Q
0 0 0
1 0 1
0 1 1
1 1 0

Table 7.9: The truth table for the xor gate.
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Figure 7.11: The logic symbol for a xnor gate (left) and the IEEE rectangular symbol (right).

A B Q
0 0 1
1 0 0
0 1 0
1 1 1

Table 7.10: The truth table for the xnor gate.

Gates With More Than Two Inputs

It is possible to construct logic gates that have more than two inputs. In principle, and and or gates
can have as many inputs as desired. The truth tables just extend those in Tables 7.5 and 7.7. The
and will have a high output if all of its inputs are high, otherwise, the output will be low. The or

will give a high output if at least one input is high; if all inputs are low, it will return a low output.
The standard symbols for these are just the logic symbols in Figure 7.6 and 7.8 with as many inputs as
desired. Related to these gates are so-called Majority Logic Gates 1. These return a high output if a
majority of the inputs are true.

7.4.3 Putting Gates Together

Logic gates typically come in integrated circuit (IC) packages with more than one gate per chip. In
addition to the gate inputs and output, the ICs have external power and a ground connections. As with
op-amps, these external connections are typically not shown in logic diagrams.

As we mentioned earlier, it is possible to build gates out of other gates. De Morgan’s theorem gives
us ways to relate one gate to another. Figure 7.12 shows how it is possible to build an and gate using
two nand gates in series, and how to build an or gate using two nor gates in series. In both cases, we

1As far as the author knows, the complement of a majority logic gate is not a Minority Empowerment Gate.
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rely on the fact that if both the A and B inputs to one of these complementary gates are the same, the
output is the complement of the input, or a not operation.

A ·A = Ā

A+A = Ā

A

B

A

B
O = A+B

O = A  B 

Figure 7.12: The upper figure shows an and gate built using two nand gates. The lower figure is an or

gate built using two nor gates.

We can continue to push this a bit. If we have only nand gates, it is also possible to build a nor

gate, and hence an or gate as well. The idea is to use de Morgan’s theorem to convert an and into an
or. To show this, we start with

Ā · B̄ = A+B .

If we now complement both sides, we get

Ā · B̄ = A+B .

In Figure 7.13 we show how both an or gate and a nor gate can be built entirely out of nand gates.

B

A
O=A+B

O  =A+B
i

Figure 7.13: An nor gate built out of four nand gates. By tapping the output at Oi, we have an or gate
instead.

Finally, we could look at xor gates. To create these out of other gates requires both and and or

gates. An example of this is shown in Figure 7.14 where we have created an xor using the following
logic:

A ∧B = (A+B) · (A ·B) ,
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A B Ā B̄ Oi O
0 0 1 1 0 1
1 0 0 1 1 0
0 1 1 0 1 0
1 1 0 0 1 0

Table 7.11: A truth table that walks us through the logic of Figure 7.13. Inputs A and B are complemented
in the first stage, and then put into an and gate to yield the intermediate output Oi. This in turn is
complemented to yield O.

where the ∧ symbol is used to represent the xor operation.

A

B

O

Figure 7.14: An xor gate built using other logic gates.

7.5 Digital Memory Circuits: Flip-flops

So far we have examined gates which allow us to perform simple logic operations on one or more inputs.
Going beyond this, it would be useful to have a logic circuit that could remember the state it is in,
even its input changes. This is the basic idea behind a memory circuit. Essentially, we have a device
that can be set into one of two states by appropriate inputs. The input can then go off, but the output
remains in the set state. While there are many different circuits that can carry out this function, we
will examine the so-called flip-flop, which as the name implies can go between two states.

7.5.1 The Reset-Set Flip-flop

This simplest flip-flop circuit is the so-called reset-set or RS flip flop. This basic circuit is shown in
Figure 7.15, where two versions (related by De Morgan’s theorem) are given. The left-hand circuit is
built from nand gates and its function is described by the following recursive logic equations:

X = (A · Y ) (7.1)

Y = (B ·X) (7.2)

For a given input, A and B, we need to find an output state, X and Y , that satisfies equations 7.1
and 7.2. If we apply De Morgan’s theorem to these two equations, we arrive at the following, which
describe the circuit on the right-hand side of Figure 7.15.

X = A+ Y

Y = B +X
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A

B Y

X

Figure 7.15: Two identical flip-flop circuits. The left-hand figure shows two nand gates, with the logic of
the two gates being A · Y and X ·B. By De Morgan’s Theorem, this is equivalent to the right-hand circuit
where complements of the inputs are put into an or gate, A+ Y and X +B.

Solving equations 7.1 and 7.2, we obtain the results given in Table 7.12. There are a couple of
interesting things to note about this circuit. If B is high and A is low, then we set the X output high
and Y is the complement of X. If B is low and A is high, then we set the X output low, or reset the X
output. Again, Y is the complement of X. When we have set or reset the X output, then if both the
A and B inputs are held high, then the flip-flop will retain the X and Y settings. It is these functions
that are the most relevant in the functioning of the so-called reset-set or RS flip-flop.

The remaining case where both A and B are low leads to both X and Y being high. If we were to
transition from low-low to high-high input, then the output of the flip-flop would be uncertain. It would
fall into one of the two states depending on mostly random factors.

A B X Y
0 0 1 1
1 0 0 1
0 1 1 0
1 1 1 0
1 1 0 1

Table 7.12: The truth-table for the flip-flop circuit shown in Figure 7.15. The crucial feature related to
memory is that there are two valid outputs for the case when both inputs are high, and these outputs depend
on previous states.

Looking at the truth table, one can discern why the complementary logic shown on the right in
Figure 7.15 is used. In this case, when both A and B are low, the flip-flop holds its current state.
However, independent of how one looks at the circuit, it is the ability to set a bit, Q, either high or low,
and then to hold that particular value that makes the RS flip-flop a memory circuit. One flip-flop can
store one bit of information.

In Figure 7.16 we show the circuit element from Figure 7.15 as an RS flip-flop. The A input is the
Reset, the B input is the Set, the X output is Q and the Y is given as the complement, Q. The RS
flip-flop is both the basis of more complicated flip-flops as well as other useful circuits which follow.

A Switch De-bouncer

Aside from its use as a memory circuit, the RS flip-flop finds other useful applications. One common
use is in de-bouncing switches. When a typical switch is closed, the contacts may actually open and
close many times before settling down in the closed state. Generally, this is not a desirable situation.
We can take advantage of the memory ability of the RS flip-flop to eliminate this bouncing.

Figure 7.17 shows such a de-bouncing circuit. When the switch is connected to the R input, R goes
low and S become high. This causes the output to go high. When the switch is connected to S, then R
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R�̀� a0
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Reset� �ð
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Q

Figure 7.16: An RS flip-flop symbol. The two input are labeled Set and Reset, while it puts out Q and Q̄
outputs. If Set is high, then Q is high. If Reset is high, then Q is low.

goes high and S goes low, leading to a low output. When the switch is in between the two terminals,
then both R and S are high, and the current state is held. Closing the switch sets the output state and
the memory features of the flip-flop prevent the bouncing from changing that state.

R�̀� a0
SAbR� �ÿ���R

ó+5 V

� �ÿ���R ñ+5 V

� �ò
out�� ����ý ÿ � �ò
out

Figure 7.17: An RS flip-flop hooked up as a switch de-bouncer. As the switch is toggled back and forth
between the Set and Reset inputs, the Q is toggled between high and low, with a single change of state each
time the switch is flipped.

Clocked Flip-flops

The clocked RS flip-flop is shown in Figure 7.18. In this circuit, the S and R input can be considered
data lines that get clocked into the flip-flop when the clock pulse is high, and then held while the clock
pulse is low. Looking in detail at the circuit, we see that when the clock is low, the output of both nand

gates will be high and the RS flip-flop will be in its hold mode. When the clock is high, it is combined
with the two data inputs to produce the output from the RS flip-flop. The truth table for this is given
in Table 7.13.

When both of the data lines are low, the output is indeterminate. This forces the flip-flop into the
mode where both Q and Q are high. When the clock pulse then goes low, the flip-flop drops randomly
into one of its two states. We will continue the idea of a clocked flip-flop as we discuss the D flip-flop
and the JK flip-flop in the following sections.

7.5.2 The JK Flip-flop

The JK flip-flop is a clocked flip-flop with two inputs, J and K. A simple schematic diagram for a JK
flip-flop is given in Figure 7.19. The output side of the circuit is effectively an RS flip-flop, however the
crossover feedback in the RS flip-flop is also fed back into the input of the JK flip-flop. Let us now look
in detail what happens in the JK flip-flop.
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OUTQR
S

Figure 7.18: A clocked RS flip-flop.

S R Qn+1

0 0 Qn

0 1 0
1 0 1
1 1 Not Defined

Table 7.13: The truth table for the clocked flip-flop (Figure 7.18) when the clock pulse is high. When the
clock pulse is low, the current state of the flip-flop is held.

Q

Q

Clock

K

J

Figure 7.19: A JK flip-flop circuit.

First we comment on the two three-input nand gates at the input of the JK flip-flop. The output
of these will be high unless all three input lines are high, in which case it will be low. This means that
if the clock input is low, the output of both nand gates will be high and the RS flip-flop will hold its
current state.

If the clock input is high, then the states of the other inputs matter. If both J and K are low, we
are also in the hold state. If either is high we set the state of the flip-flop. If J is high, then Q goes
high, and if K is high, then Q goes low. If all three inputs to the JK flip-flop are high, then both Q
and Q̄ flip states. This behavior is summarized in Table 7.14. The toggling behavior has applications
in more sophisticated circuits such as counters and shift registers which will be discussed later.

7.5.3 The D Flip-flop

The D flip-flop is an edge-triggered flip-flop that takes the signal input on its data line, D, and puts it
on the output line, Q, when the clock makes a transition (known as an edge). Some flip-flops transfer
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S��̀
1J!a ¬1
C1#a0
1K!a ¬2
RBbP

Figure 7.20: A typical circuit symbol for a JK flip-flop.

CLR CLK J K Q Q̄ Comment
L x x x L H Default
H on L L Qn−1 Q̄n−1 Hold
H on H L H L Set
H on L H L H Set
H on H H Q̄n−1 Qn−1 Toggle

Table 7.14: The truth table for the JK flip-flop.

the data on the rising edge and others on the falling edge. The logic in a simple D flip-flop is shown in
Figure 7.21. Let us look in detail at its behavior.

Clock

D

Q

Q

Figure 7.21: A D flip-flop circuit.

We can first note that the two nand gates connected to the outputs Q and Q̄ are actually an RS
flip-flop with the truth table given in Table 7.12. To simplify things, we will consider the upper input
to this flip-flop as A and the lower input as B, as in Figure 7.15. We now look at the output of the two
nand gates on the input side of the flip-flop.

If the clock signal is low, then both nand gates will output a high signal (a nand produces a low
output only if both inputs are high). This means that both A and B are high and the RS flip-flop holds
its current state.

If the clock goes from low to high, then one of the two nand gates will output a low and the other
a high. If D is high, then A will be low and B will be high. If D is low, then A will be high and B will
be low. In other words, A will be D̄ and B will be D. This then leads to the truth table in Table 7.15.
When the clock is high, Q will take on whatever value D has. When the clock is low, it will remember
the value.

A typical symbols for a D flip-flops is shown in Figure 7.22. However, there are likely to be additional
inputs which allow one to set or clear the outputs, independent of the input levels.
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Clock D Qn+1

L L Qn

L H Qn

↑ L L
↑ H H

Table 7.15: The truth table for the D flip-flop.

1D�`� a0
C1CbR

Figure 7.22: A typical circuit symbol for a D flip-flop.

7.6 Clock Circuits

In the previous section, we saw several instances of a clock pulse being used as input to a gate. In fact,
if we look at a digital computer, one of the fundamental elements is a clock. Essentially, the computer
performs an operation at every clock pulse. Being able to generate and use clock pulses is a crucial
element of modern digital electronics. Precision clocks are often driven by crystal oscillators, and these
can be easily purchased. In this course, we will look at a clock circuit that can be built out of the circuit
elements we have studied. Such a circuit is the basis of a common off-the-shelf clock chip known as the
555.

7.6.1 The 555 Chip

A common timer chip is the 555 family of chips. The pin out of the in-line package is shown in
Figure 7.23. Table 7.16 lists the eight pins with their names and the abbreviation used in the circuit
diagrams for these pins. The 555 is designed to output a clock pulse from the output terminal. The
period and shape of the pulse is controlled by two external resistors and an external capacitor that are
connected to the 555. This allows for a choice of time constants, with the period of the clock pulse given

Pin Name Abbreviation
1 Ground
2 Trigger IT
3 Output O
4 Reset R
5 Control Voltage OK
6 Threshold IS
7 Discharge OD
8 VCC

Table 7.16: A list of the names of the eight pins on the 555 and the symbol used in this text for each of
them.

by (R1 + 2 ·R2)C.
The main elements in the 555 are two comparator circuits, as shown in Figure 7.24. The upper

comparator has a threshold voltage of Vref = 2
3VCC . When the Threshold input is below 2

3VCC , the
comparator has a low (ground) output. When Threshold is above 2

3VCC , the comparator has a high
(VCC) output.
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Figure 7.23: The pin out of an in-line 555 timer chip.

The lower comparator has a threshold voltage of 1
3VCC . When the Trigger input is below 1

3VCC ,
then the output of the comparator goes high (VCC). If the Trigger is above 1

3VCC , the the comparator
output goes low (ground). The outputs of the two comparators are used as set and reset inputs to a
flip-flop. The output of the flip-flop drives the output pulse, and when it is high, puts the transistor
into saturation, which effectively connects the Discharge line to ground.

ÿxyy z�� �ð
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� �ÿ���5kΩ

��óVCC ���5kΩ �������ÿ� �þxyy z�� �ð
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2
3
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1
3
VCC
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Output�������������� ������� �� �������������������������� �ÿ ������ �ò
Discharge

Figure 7.24: The circuit inside the 555, showing the two comparators and RS flip-flop.

7.6.2 A Clock Pulse Generator

We might want to use the 555 used in a circuit to produce a regular output pulse. In order to do this, we
need to connect two resistors and a capacitor to the circuit. An example circuit is shown in Figure 7.25.

The external resistors form an RC circuit between VCC and ground. This charges up the capacitor
with a time constant of τ1 = (R1 +R2) ·C. Let us now look at what happens for various voltage ranges
at the point P . Table 7.17 shows the output of the RS flip-flop inside the 555 as a function of the voltage
at the point P . If the voltage falls below 1

3VCC , the clock circuit will output a low signal. If VP rises
above 2

3VCC , the clock circuit will output a high signal. For voltages in between, the circuit will hold
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the current output state.

VP R S O
0 to 1

3VCC L H L
1
3VCC to 2

3VCC L L Hold
2
3VCC to VCC H L H

Table 7.17: The output of the RS flip-flop in the 555 timer (shown in Figure 7.24) as a function of the
voltage at point P in the circuit of Figure 7.25. When VP is between 1

3 and 2
3 of VCC , the flip-flop simply

holds its current output.

Assume that the capacitor is initially uncharged. It will begin to charge up from zero with time
constant τ1 = (R1 +R2) ·C. While VP is smaller than 1

3VCC , the output will be low and the transistor
that connects Discharge to ground will be off. When VP = 1

3VCC the flip-flop will go into its hold mode.
The circuit will continue to charge up from 1

3VCC to 2
3VCC and the output will remain low. When

VP reaches 2
3VCC , the output will change to high and the transistor will go into saturation, effectively

connecting the Discharge terminal to ground. This will cause the potential at point G to go to ground.
The capacitor will start discharging through R2 to ground. When VP reaches 1

3VCC , the output will go
low, and the capacitor will start to charge up again.
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Figure 7.25: This circuit shows a 555 timer hooked up to produce a clock output signal with period T =
0.693 · (R1 + 2R2)C. The output is on the Clock line.

The upper plot in Figure 7.26 gives the voltage at P as a function of time. This shows the charge-up
with time constant (R2 +R1) · C and the discharge with time constant R2 · C. Since charging and
discharging of a capacitor go as

V (t) ∼ e−t/τ ,

the time to go from 1
3Vo to 2

3Vo can be found from

1/3

2/3
= e−t/τ

t = ln (2) · τ ,
so the period is 0.693 · τ . For our circuit, we then have

T555 = 0.693 · (R1 + 2R2) · C . (7.3)
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We would also like to know the ratio of high clock pulse time to low. In the case where R1 equals R2,
the output clock pulse is shown in the lower plot of Figure 7.26. The fraction of time in which the pulse
is low is flow = R1+R2

R1+2R2
, while the fraction in which it is high isfhigh = R2

R1+2R2
. In the case that R1 is

much smaller than R2, both of these approach 1
2 .
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Figure 7.26: The upper plot shows the voltage at point P in the left-hand circuit of Figure 7.25 as a
function of time. The lower plot shows the output of the circuit as a function of time. It is assumed that
R1 = R2 = R.

7.6.3 A Gate Generator

Another use for the 555 timer is to produce a single output pulse with a controllable pulse width. Such
a circuit is useful in triggering circuits when some specified event has occurred. A circuit to do this is
shown in Figure 7.27.

7.7 Counter Circuits

The circuit shown in Figure 7.28 does several things. The easiest to see is based on the fact that with
both the J and K inputs of the JK flip-flop high, the output Q toggles between high and low each
time the clock pulse goes high, and holds its current state when the clock is low. The output of each
successive flip-flop is connected to both the clock input of the next flip-flop in the stage, and to an
external bit, Qi as shown in the circuit.
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Figure 7.27: A 555 timer hooked up to produce a single output pulse with controllable width.

If we look at the values of Qi, then we will see the output bits counting up from zero (000) to
seven (111), then going back to zero and starting over. We have a simple counting circuit which can be
extended as far to the right as we want.

S��̀
1J!a ¬1
C1#a0
1K!a ¬2
RBbP� �xyyy z� �ðClock

��� ������ÿ��� �������ÿ��� �ð
+5V
������������������������������������ �xyy z

ÿ������ � S�`�
1J!a ¬1
C1#a0
1K!a ¬2
RBbP� ������ÿ� �������ÿ
ÿ������ � S�`�

1J!a ¬1
C1#a0
1K!a ¬2
RBbP� ������ÿ� �������ÿ

�����óQ1 �����óQ2 ÿ�����óQ3 |{}xyy z
Figure 7.28: A 3-bit binary counter built from three JK flip-flops. The circuit is extensible to the right by
adding more flip-flops. The outputs, Qi, can also be used as clocks themselves. The clock rate at output
i = 1, 2, 3, . . . is 1/2i times the input clock rate.

However, if we examine the outputs at the various Qi, we see the pulse structure shown in Figure 7.29.
The output on Q1 has 1

2 the frequency of the clock input, while each successive stage divide the output
frequency by another factor of two. Such a circuit is known as a frequency divider. It allows us to take
some very large frequency and divide it down by any power of 2.

7.8 Shift Registers

Related to the counting circuit from section 7.7 are the so-called shift registers. These circuits shift the
bits of a data word one bit to the left or one bit to the right on each clock pulse. An example of such
a circuit is shown in Figure 7.30, where we have a 4-bit shift register built from D flip-flops. All of the
D flip-flops are clocked from the same clock pulse. On the relevant clock edge, the flip-flops copy their
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3

Time

Figure 7.29: The input clock pulse and the signals on the three output bits, Q1, Q2 and Q3, as a function
of time.

inputs to their output. If the Data line is high on the first transition, and then subsequently low, the
high bit will move to the right through the shift register on each clock pulse.

Typically, the Reset lines of all the D flip-flops are connected to an external Reset line. This allows
one to reset all the flip-flops to zero. It is also normal to have a set of data input lines which connect to
the Sets of the flip-flops. This allows one to set a particular data word that is shifted through the shift
register.

If the bit that falls off the right-hand side of the circuit is fed back into the data input on the left,
the shift register is known as circular.

1D�`� a0
C1CbR���ÿ� �ð

Clock

���������� �ÿ��� 1D�`� a0
C1CbR���������� �ÿ��� 1D�`� a0

C1CbR���������� �ÿ��� 1D�`� a0
C1CbR�������� �xyy z� �ð

Data
ÿ� � ÿ� � ÿ� � ÿxy z���óQ0 ���óQ1 ���óQ2 ���óQ3

Figure 7.30: A four-bit shift register built with D flip-flops. The data line input is shifted one to the right
on each clock pulse input. The system can be extended to the right with additional flip-flops.
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7.9 Adder Circuits

7.9.1 The Half Adder Circuit

A half adder takes two bits as input and returns two output bits that represent the sum of the two bits.
We refer to these as the least significant bit, L, and the carry bit, C. The truth table for such a device
is given in Table 7.18. If we look at what this is doing, we quickly realize that the carry bit is just the

A B C L
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 7.18: The truth table for the half adder shown in Figure 7.31.

and of the two inputs and the least significant bit is just the exclusive or (xor) of the two inputs. This
leads us to the circuit shown in Figure 7.31 for a simple implementation of the half adder.

B

A
LSB

Carry

A

B

L

C

1/2
Add

Figure 7.31: A half adder circuit with two inputs, A1 and B1 and two outputs, L and C.

While adding two bits is interesting, in fact we would like to be able to do additions on a few more.
One implementation of a two-bit adder can be made by using three half adder circuits and an or gate as
shown in Figure 7.32. This circuit has the truth table given in Table 7.19. We could logically continue
chaining half adders together increasing the number of bits in the circuit. An unwieldy example is shown
in Figure 7.33, where we have put together four layers of half adders to create a four-bit adder circuit.
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L

C

1/2 Add

L

C

1/2 Add

L

C

1/2 Add

2

2

O1

O

O3

A 1

B1

A

B2

Figure 7.32: A two-bit adder circuit built from three half adders and an or gate.

A2 A1 B2 B1 O3 O2 O1

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Table 7.19: The truth table for the two-bit adder in Figure 7.32.
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Figure 7.33: A four-bit adder circuit built from half adders and a 4-input or gate.
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7.9.2 Full Adder Circuits

The adder circuits that we have built out of half adders very quickly became quite unwieldy, both in the
number of half adders needed, and the increasing “depth” of the logic circuits. It is useful at this point
to step back and consider what we really want to do. In fact, we need an adder circuit that accepts
three inputs: A, B and an input carry, Ci. The circuit should then produce two output bits, L and Co,
as before. The truth table for such a circuit is given in Table 7.20.

A B Ci Co L
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

Table 7.20: The truth table for a full adder. The adder has three inputs, A, B and carry in, Ci, and two
outputs, L and carry out, Co.

The implementation of this circuit is slightly more complicated than the half adder circuit. The
full adder is shown in Figure 7.34, where two exclusive ors are used to determine the least significant
bit. The logical or of a pair of ands leads to the carry bit. What makes this adder particularly nice
is how it generalizes to further bits. Figure 7.35 shows it expanded to four bits. The logic is quite
straightforward, and the depth does not increase as the number of bits are increased. Basically, the
depth is limited to three logic gates for any number of bits, whereas the half adder depth goes as the
number of bits plus 1.
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Figure 7.34: A full adder circuit.
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Figure 7.35: A 4-bit adder built using four full adder circuits.
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7.10 Converters

In many situations it is desirable to digitize some signal, or to turn some digital signal into an analog
signal. In this section, we discuss several converters which carry out this task.

7.10.1 Analog to Digital Converters

An analog to digital converter, ADC, accepts an analog input voltage and outputs a digital signal that
indicates the magnitude of the voltage. In section 6.8, we looked at simple comparator circuits that
output two different voltages depending on whether the input voltage was larger or smaller than a
reference voltage. It is this behavior that is used as the basis of an ADC. The basic idea is to set up a
series of comparators that whose output is either a low or a high signal depending on whether the input
voltage is larger or smaller than the comparator’s reference voltage. The outputs of the comparators
are then multiplexed together to form a digital output that represents the input voltage.

To design such a circuit, we must specify an allowed range of allowed input voltages, vmin to vmax.
In addition, we need to specify how many bits of precision we want the output to have. As we saw
above, for a single bit of precision, we needed one comparator. For two bits of precision, we would need
three comparators. Continuing, for n bits of precision, we would need 2n − 1 comparators. Generally
speaking, the comparators would be set up to have uniformly spaced reference voltages:

vref =
1

n
(vmax − vmin) ,

2

n
(vmax − vmin) , . . . ,

n− 1

n
(vmax − vmin) .

Assuming that the input voltage is between vmin and vmax, then all comparators whose reference is
below vin would output a high signal and all which are above would output a low signal. Figure 7.36
shows a three-bit ADC. On the left side we see 7 comparators whose reference voltages are driven by
the voltage divider network from Vref to ground.

We now would like to turn the comparator output into a digital signal. This is done with the series
of xor gates which are driven by the comparators. The xor associated with the comparator with the
largest reference voltage has one of its inputs grounded. If the comparator is high, then this xor will
have exactly one high input, and therefore its output will be high. In addition, all the comparators
below the highest one will also have a high output. This means that all the xor gates below the top
one will have two high inputs, so their outputs will be low. Only the xor that sits above the highest
comparator that has a high output will have a high output.

Since at most one xor will have a high output, we can have each xor drive the necessary bits to
produce the correct 3-bit output. We add one extra step, which is to put diodes between the xors and
the output bus and then put some pull-down resistors at the bottom of the buses so the voltages at the
outputs will effectively be the high signal (minus a diode drop) from the output of the xor.
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Figure 7.36: An analog to digital converter which is able to output 0 to 7 inclusive in binary on the three
output bits.
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7.10.2 Digital to Analog Converters

The reverse of the ADC is the digital to analog converter, or DAC. This circuit would take a digital
input and produce an analog voltage that is proportional to the digital input. An example of an R2R
DAC circuit is shown in Figure 7.37. The resistors need to be accurately matched, but the exact value
of R is not crucial. The digital input is set by toggling the switches. A zero has a switch connected to
ground, while a one has the switch connected to the op-amp’s inverting input.

The left-most switch corresponds to the most significant bit, while the right-most switch is the least.
The op-amp circuit is just an adder circuit as discussed in section 6.3.5. Moving across the top row of
resistors from left to right, the voltage at the various junctions are 1

2Vcc,
1
4Vcc,

1
8Vcc and 1

16Vcc. Each
of these voltages can be connected to the inverting input of the op-amp through a resistor R, which is
matched to the feedback resistor in the circuit. The adder just produces an output which is the negative
of the sum of the connected input voltages, that is an analog output which can take on values between
0 and −VCC in 1

16VCC volt steps.
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Figure 7.37: A four-bit digital to analog converter. The output voltage will range from 0 to − 15

16VCC .



Appendix A

Component Labels

Components are labeled in a number of ways. Color codes are typical for resistors, while various
combinations of numbers, letters and colors may be used for capacitors. In this section, we show some
of the common methods of labeling components. This list is by no means comprehensive, and when in
doubt about a particular component value, measuring it is always the right thing to do.

As mentioned above, colors are used in labeling several different components. The color-to-number
correlation is given in Table A.1. There are numerous poems and phrases in which the first letter of the
color name is the first letter of a word, and the poem or phrase follows the 0-to-9 order in the following
table. None of these phrases will be repeated here.

Color Value
Black 0
Brown 1
Red 2

Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Grey 8
White 9

Table A.1: The color-numeric correspondence in electrical components.

A.1 Resistor Codes

The most common usage of color codes is in labeling resistors. Typical resistors have four color bands
as shown in the left-hand picture of Figure A.1. Precision resistors have a 5th colored band as shown in
the right side plot of the figure. To determine the value of a resistor with n bands, the first n− 2 bands
give the numerical part of the resistance, the (n− 1)th band gives the power-of-ten multiplier, and the
nth band gives the tolerance. Table A.2 shows how this works for four-band resistors, while table A.3
explains five-band resistors.

A couple of resistor examples are shown in Figure A.2. The first has four bands: red-black-yellow-
gold. From Table A.2, we see that the first two bands give s 20. The third band says that we multiply this
by 104 and the fourth band indicates that we have a 5% tolerance. The resistor is R = 200 kΩ (±5%).
The second example is a 5-band resistor with purple-black-brown-red-brown. Table A.3 gives us the
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Figure A.1: The left-hand diagram shows a normal resistor with 4 bands. The method for reading these is
shown in Figure A.2. The right-hand diagram shows the coding on precision resistors. Table A.3 gives the
rules for reading these.

Color 1st 2nd 3rd 4th

Black 0 0 ×100

Brown 1 1 ×101

Red 2 2 ×102

Orange 3 3 ×103

Yellow 4 4 ×104

Green 5 5 ×105

Blue 6 6 ×106

Violet 7 7
Grey 8 8
White 9 9
Gold ×10−1 ±5%
Silver ×10−2 ±10%
(None) ±20%

Table A.2: The meaning of each band in normal (4-band) resistor.

Color 1st 2nd 3rd 4th 5th

Black 0 0 0 ×100 ±1%
Brown 1 1 1 ×101 ±.1%
Red 2 2 2 ×102 ±.01%

Orange 3 3 3 ×103 ±.001%
Yellow 4 4 4 ×104

Green 5 5 5 ×105

Blue 6 6 6 ×106

Violet 7 7 7
Grey 8 8 8
White 9 9 9
Gold ×10−1

Silver ×10−2

Table A.3: The meaning of each band in a precision (5-band) resistor.

numeric part from the first three bands as 701. The fourth band indicates we multiply this by 102 and
the fifth band says that we have 0.1% tolerance. Thus R = 70.1 kΩ(±0.1%).
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Figure A.2: Examples of reading 4-band and 5-band resistors. Note that in the third example, the color of
the fourth band is “none”.
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A.2 Capacitors

There are probably more ways of labeling capacitors than one can count. In this section, we go over a
number of the labeling schemes that one may encounter in building circuits. As with any component,
measuring it is probably the most accurate way to determine its actual value. Electrolytic capacitors
tend to come in cylindrical cans. These capacitors have a definite parity with the positive terminal
(anode) being labeled in some fashion. A mark may be printed on the capacitor, or there may be a
band or ring around one end of the capacitor as shown in Figure A.3. The capacitor will also normally
have its capacitance printed on the side in µF ; however, a 22µF capacitor (for example) may be labeled
as 22 M, where M is used to represent µF . In addition, the capacitor will have a voltage rating
which indicates the maximum voltage at which the capacitor can operate. If one of these is hooked up
backwards and subjected to a large voltage, one of the ends tends to remove itself from the the capacitor
with a loud bang.

+

−

Crimp or band

Figure A.3: An electrolytic capacitor. Capacitance is indicated in µF , while the end with the crimp or band
is the positive end (anode) of the capacitor.

Another type of capacitor is the ceramic disk capacitor. The are typically flat discs. A couple of
typical labeling schemes for these are shown in Figure A.4.

XXM
YYVCCM

Figure A.4: The ceramic capacitor on the left is labeled with three numbers as shown, CCM. The value of
the capacitor is given as CC × 10M pF . The label 103 translates to 10 × 103 pF , while 501 translates to
50× 101 pF . The capacitor on the right has both a capacitance and a voltage on it. The XXM is XX µF ,
while the voltage is given as Y Y V .

You may also encounter tantalum electrolytic capacitors, seen in Figure A.5. Some of these are
color-coded as shown in the figure, where Table A.4 shows how to interpret the colors on the capacitor.
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Voltage and + Polarity
Tolerance

C
M

C

+ −

Figure A.5: A tantalum electrolytic capacitor. The capacitance can be written numerically on the capacitor
in µF , or the color code in Table A.4 can be used. If the color code is used, the capacitance is in pF .

Color Voltage Value Multiplier
Black 4 0
Brown 6 1
Red 10 2

Orange 15 3
Yellow 20 4 104

Green 25 5 105

Blue 35 6 106

Violet 50 7 107

Grey 8
White 9

Table A.4: The color code for the tantalum electrolytic capacitors shown in Figure A.5. The capacitance is
given in pF .
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A.3 Semiconductor Labels

Semiconductors are labeled with a combination of letters and numbers:

XNYYYY

with the letters and numbers having the following meaning.

X The number of semiconductor junctions. For a diode, this is one. For a bipolar transistor, this is
2.

N The device is a semiconductor.

YYYY The identification number (order of registration) of the device. This also may includes a suffix
letter that can indicate matching devices (M), reverse polarity (R) and modifications (A,B,C,· · ·).

An example is the 2N2222 transistor, for which there is also a modified version, the 2N2222A. A
typical diode is the 1N4004.
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A.4 Diodes

In a diode, the pin which is connected to the p-type semiconductor layer is the anode, while that
connected to the n-type layer is the cathode. With diodes, one of the most crucial pieces of information
is which terminal is connected to the anode and which to the cathode. The diode is said to be forward
biased when the anode is at higher potential than the cathode. It is reverse biased when the cathode
is at higher potential. Figure A.6 shows a couple of typical diode packages on the left, while on the
right are a couple of typical light-emitting diode (LED) packages. For the diode, the pointed end of
the can, or the end with the stripe or band around it, indicates the cathode. In the LED, the shorter
leg, or the side that has a flat spot on the base of the can, is the cathode. Zener diodes will probably
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Figure A.6: Typical diode and light-emitting diode containers. Under forward biasing, the anode is at higher
potential than the cathode.

have the break-down voltage printed on the can as well. “5.6” would mean that the diode breaks down
when it is reverse biased with 5.6V . There may also be colored bands on a diode. This information
codes the diode type. Two examples of this are shown in Figure A.7 while Table A.5 shows what each
color means. The last band is always the suffix letter, with black indicating that there is no suffix. The
remaining bands, reading away from the cathode, give the diode identification number. To get the full
number, add 1N to the start of the code. In the examples, yellow-black-black-yellow-brown corresponds
to 4004A. This is then a 1N4004A diode.
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Figure A.7: Colored band labels for diodes.

Color Digit Suffix
Black 0 (none)
Brown 1 A
Red 2 B

Orange 3 C
Yellow 4 D
Green 5 E
Blue 6 F
Violet 7 G
Grey 8 H
White 9 J

Table A.5: The color codes used to identify diodes.
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A.5 Transistors

The pin labels of typical bipolar transistors are shown in Figure A.8. While it is usually safest to
double-check the pins on the transistor spec sheet, Figure A.8 does accurately describe a majority of
these transistors. The base connection is in the middle. Most bipolar transistors will function, but not
as well, if one reverses E and C in a circuit.

BE C C E
B B

EC

Figure A.8: Typical pinouts for bipolar transistors. The three pins are the emitter (E), the base (B), and
the collector (C).
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A.6 Integrated Circuits

Typical ICs come in 8- and 14-pin packages. Figure A.9 shows the pin numbering scheme on a 14-
pin package. The key identifying mark is the tab shown at the center of the right-hand side of the
chip. Looking at the top of the package with the tab on the right, pin 1 is above the tab and the
highest-numbered pin (14) is below the tab.

1413
12111098

123

7 6 5 4

2 134567

8 9 10 11 12 13 14

Figure A.9: The pin number scheme on a 14-pin IC package. Pin 1 is to the right of the tab, and pin 14 is
to the left of the tab.



Appendix B

Answers to Selected Problems

B.1 Selected Problems in Chapter 1

(1.2) v ≃ 8 × 10−3cm/s.

(1.6) 1 : 1, 1 : 2, 1 : 9.

(1.8) (a) V0/11, (b) 0, (c) V0/(8R).

(1.10) IN = V0/(8R), RN = (8/11)R.

(1.16) Vth = V0
R2

R1+R2
, Rth = R1R2

R1+R2
.

(1.20) R1 = 200Ω, R2 = 100Ω.

(1.24) (a) VAB = 2
5Vo, (b) IAB = 2

3
Vo

R , (e) RL = 3
5R.

B.2 Selected Problems in Chapter 2

(2.2) VRMS = v0√
3
.

(2.6) (5 + 3j) =
√

34e.54j .

(2.12) (a) i(t) = 0.224Aej(ωt−π/4), (b) < P >= 0.792W .

(2.14) Zeq = R(−j) 1−ω2LC
ωC , 1√

LC
.

(2.16) Zeq = jωL
1−ω2LC .

(2.18) ω =
√

ω2
LC − ω2

RC .

(2.24) s−
1
2 , 10 dB/decade.

(2.26) f(t) = 3
4 sin(2πt/T ) − 1

4 sin(6πt/T ).
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